| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2m.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 2 |
|
lclkrlem2m.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
| 3 |
|
lclkrlem2m.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
| 4 |
|
lclkrlem2m.q |
⊢ × = ( .r ‘ 𝑆 ) |
| 5 |
|
lclkrlem2m.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
| 6 |
|
lclkrlem2m.i |
⊢ 𝐼 = ( invr ‘ 𝑆 ) |
| 7 |
|
lclkrlem2m.m |
⊢ − = ( -g ‘ 𝑈 ) |
| 8 |
|
lclkrlem2m.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 9 |
|
lclkrlem2m.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
| 10 |
|
lclkrlem2m.p |
⊢ + = ( +g ‘ 𝐷 ) |
| 11 |
|
lclkrlem2m.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 12 |
|
lclkrlem2m.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 13 |
|
lclkrlem2m.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
| 14 |
|
lclkrlem2m.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 15 |
|
lclkrlem2n.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 16 |
|
lclkrlem2n.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 17 |
|
lclkrlem2o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 18 |
|
lclkrlem2o.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 19 |
|
lclkrlem2o.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 20 |
|
lclkrlem2o.a |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 21 |
|
lclkrlem2o.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 22 |
|
lclkrlem2q.le |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 23 |
|
lclkrlem2q.lg |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 24 |
|
lclkrlem2v.j |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = 0 ) |
| 25 |
|
lclkrlem2v.k |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = 0 ) |
| 26 |
17 19 21
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 27 |
8 9 10 26 13 14
|
ldualvaddcl |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐹 ) |
| 28 |
1 8 16 26 27
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ⊆ 𝑉 ) |
| 29 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 30 |
1 29 15 26 11 12
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 31 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 32 |
17 19 1 15 31 21 11 12
|
dihprrn |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 33 |
1 29
|
lssss |
⊢ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑉 ) |
| 34 |
30 33
|
syl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑉 ) |
| 35 |
17 31 19 1 18 21 34
|
dochoccl |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) = ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 36 |
32 35
|
mpbid |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) = ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 37 |
17 18 19 1 29 20 21 30 36
|
dochexmid |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊕ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) = 𝑉 ) |
| 38 |
17 19 21
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 38 24 25
|
lclkrlem2n |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 40 |
11
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
| 41 |
12
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
| 42 |
17 19 1 18
|
dochdmj1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑋 } ⊆ 𝑉 ∧ { 𝑌 } ⊆ 𝑉 ) → ( ⊥ ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ) |
| 43 |
21 40 41 42
|
syl3anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ) |
| 44 |
|
df-pr |
⊢ { 𝑋 , 𝑌 } = ( { 𝑋 } ∪ { 𝑌 } ) |
| 45 |
44
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) |
| 46 |
45
|
fveq2i |
⊢ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) = ( ⊥ ‘ ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) |
| 47 |
40 41
|
unssd |
⊢ ( 𝜑 → ( { 𝑋 } ∪ { 𝑌 } ) ⊆ 𝑉 ) |
| 48 |
17 19 18 1 15 21 47
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) = ( ⊥ ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) |
| 49 |
46 48
|
eqtrid |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) = ( ⊥ ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) |
| 50 |
22 23
|
ineq12d |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) = ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ) |
| 51 |
43 49 50
|
3eqtr4d |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) = ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ) |
| 52 |
8 16 9 10 26 13 14
|
lkrin |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 53 |
51 52
|
eqsstrd |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 54 |
29
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 55 |
26 54
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 56 |
55 30
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 57 |
17 19 1 29 18
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 58 |
21 34 57
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 59 |
55 58
|
sseldd |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 60 |
8 16 29
|
lkrlss |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐸 + 𝐺 ) ∈ 𝐹 ) → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 61 |
26 27 60
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 62 |
55 61
|
sseldd |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 63 |
20
|
lsmlub |
⊢ ( ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∧ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ↔ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊕ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
| 64 |
56 59 62 63
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∧ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ↔ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊕ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
| 65 |
39 53 64
|
mpbi2and |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊕ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 66 |
37 65
|
eqsstrrd |
⊢ ( 𝜑 → 𝑉 ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 67 |
28 66
|
eqssd |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 ) |