Metamath Proof Explorer


Theorem lclkrlem2n

Description: Lemma for lclkr . (Contributed by NM, 12-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v 𝑉 = ( Base ‘ 𝑈 )
lclkrlem2m.t · = ( ·𝑠𝑈 )
lclkrlem2m.s 𝑆 = ( Scalar ‘ 𝑈 )
lclkrlem2m.q × = ( .r𝑆 )
lclkrlem2m.z 0 = ( 0g𝑆 )
lclkrlem2m.i 𝐼 = ( invr𝑆 )
lclkrlem2m.m = ( -g𝑈 )
lclkrlem2m.f 𝐹 = ( LFnl ‘ 𝑈 )
lclkrlem2m.d 𝐷 = ( LDual ‘ 𝑈 )
lclkrlem2m.p + = ( +g𝐷 )
lclkrlem2m.x ( 𝜑𝑋𝑉 )
lclkrlem2m.y ( 𝜑𝑌𝑉 )
lclkrlem2m.e ( 𝜑𝐸𝐹 )
lclkrlem2m.g ( 𝜑𝐺𝐹 )
lclkrlem2n.n 𝑁 = ( LSpan ‘ 𝑈 )
lclkrlem2n.l 𝐿 = ( LKer ‘ 𝑈 )
lclkrlem2n.w ( 𝜑𝑈 ∈ LVec )
lclkrlem2n.j ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = 0 )
lclkrlem2n.k ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = 0 )
Assertion lclkrlem2n ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v 𝑉 = ( Base ‘ 𝑈 )
2 lclkrlem2m.t · = ( ·𝑠𝑈 )
3 lclkrlem2m.s 𝑆 = ( Scalar ‘ 𝑈 )
4 lclkrlem2m.q × = ( .r𝑆 )
5 lclkrlem2m.z 0 = ( 0g𝑆 )
6 lclkrlem2m.i 𝐼 = ( invr𝑆 )
7 lclkrlem2m.m = ( -g𝑈 )
8 lclkrlem2m.f 𝐹 = ( LFnl ‘ 𝑈 )
9 lclkrlem2m.d 𝐷 = ( LDual ‘ 𝑈 )
10 lclkrlem2m.p + = ( +g𝐷 )
11 lclkrlem2m.x ( 𝜑𝑋𝑉 )
12 lclkrlem2m.y ( 𝜑𝑌𝑉 )
13 lclkrlem2m.e ( 𝜑𝐸𝐹 )
14 lclkrlem2m.g ( 𝜑𝐺𝐹 )
15 lclkrlem2n.n 𝑁 = ( LSpan ‘ 𝑈 )
16 lclkrlem2n.l 𝐿 = ( LKer ‘ 𝑈 )
17 lclkrlem2n.w ( 𝜑𝑈 ∈ LVec )
18 lclkrlem2n.j ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = 0 )
19 lclkrlem2n.k ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = 0 )
20 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
21 lveclmod ( 𝑈 ∈ LVec → 𝑈 ∈ LMod )
22 17 21 syl ( 𝜑𝑈 ∈ LMod )
23 8 9 10 22 13 14 ldualvaddcl ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐹 )
24 8 16 20 lkrlss ( ( 𝑈 ∈ LMod ∧ ( 𝐸 + 𝐺 ) ∈ 𝐹 ) → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
25 22 23 24 syl2anc ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
26 1 3 5 8 16 17 23 11 ellkr2 ( 𝜑 → ( 𝑋 ∈ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ↔ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = 0 ) )
27 18 26 mpbird ( 𝜑𝑋 ∈ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )
28 1 3 5 8 16 17 23 12 ellkr2 ( 𝜑 → ( 𝑌 ∈ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ↔ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = 0 ) )
29 19 28 mpbird ( 𝜑𝑌 ∈ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )
30 20 15 22 25 27 29 lspprss ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )