| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2m.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 2 |  | lclkrlem2m.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 3 |  | lclkrlem2m.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑈 ) | 
						
							| 4 |  | lclkrlem2m.q | ⊢  ×   =  ( .r ‘ 𝑆 ) | 
						
							| 5 |  | lclkrlem2m.z | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 6 |  | lclkrlem2m.i | ⊢ 𝐼  =  ( invr ‘ 𝑆 ) | 
						
							| 7 |  | lclkrlem2m.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 8 |  | lclkrlem2m.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 9 |  | lclkrlem2m.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 10 |  | lclkrlem2m.p | ⊢  +   =  ( +g ‘ 𝐷 ) | 
						
							| 11 |  | lclkrlem2m.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 12 |  | lclkrlem2m.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 13 |  | lclkrlem2m.e | ⊢ ( 𝜑  →  𝐸  ∈  𝐹 ) | 
						
							| 14 |  | lclkrlem2m.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 15 |  | lclkrlem2n.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 16 |  | lclkrlem2n.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 17 |  | lclkrlem2n.w | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 18 |  | lclkrlem2n.j | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  =   0  ) | 
						
							| 19 |  | lclkrlem2n.k | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  =   0  ) | 
						
							| 20 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 21 |  | lveclmod | ⊢ ( 𝑈  ∈  LVec  →  𝑈  ∈  LMod ) | 
						
							| 22 | 17 21 | syl | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 23 | 8 9 10 22 13 14 | ldualvaddcl | ⊢ ( 𝜑  →  ( 𝐸  +  𝐺 )  ∈  𝐹 ) | 
						
							| 24 | 8 16 20 | lkrlss | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝐸  +  𝐺 )  ∈  𝐹 )  →  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 25 | 22 23 24 | syl2anc | ⊢ ( 𝜑  →  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 26 | 1 3 5 8 16 17 23 11 | ellkr2 | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ↔  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  =   0  ) ) | 
						
							| 27 | 18 26 | mpbird | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 28 | 1 3 5 8 16 17 23 12 | ellkr2 | ⊢ ( 𝜑  →  ( 𝑌  ∈  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ↔  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  =   0  ) ) | 
						
							| 29 | 19 28 | mpbird | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 30 | 20 15 22 25 27 29 | lspprss | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ⊆  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) |