Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2m.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
2 |
|
lclkrlem2m.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
3 |
|
lclkrlem2m.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
4 |
|
lclkrlem2m.q |
⊢ × = ( .r ‘ 𝑆 ) |
5 |
|
lclkrlem2m.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
6 |
|
lclkrlem2m.i |
⊢ 𝐼 = ( invr ‘ 𝑆 ) |
7 |
|
lclkrlem2m.m |
⊢ − = ( -g ‘ 𝑈 ) |
8 |
|
lclkrlem2m.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
9 |
|
lclkrlem2m.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
10 |
|
lclkrlem2m.p |
⊢ + = ( +g ‘ 𝐷 ) |
11 |
|
lclkrlem2m.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
12 |
|
lclkrlem2m.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
13 |
|
lclkrlem2m.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
14 |
|
lclkrlem2m.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
15 |
|
lclkrlem2n.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
16 |
|
lclkrlem2n.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
17 |
|
lclkrlem2n.w |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
18 |
|
lclkrlem2n.j |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = 0 ) |
19 |
|
lclkrlem2n.k |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = 0 ) |
20 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
21 |
|
lveclmod |
⊢ ( 𝑈 ∈ LVec → 𝑈 ∈ LMod ) |
22 |
17 21
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
23 |
8 9 10 22 13 14
|
ldualvaddcl |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐹 ) |
24 |
8 16 20
|
lkrlss |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐸 + 𝐺 ) ∈ 𝐹 ) → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
25 |
22 23 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
26 |
1 3 5 8 16 17 23 11
|
ellkr2 |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ↔ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = 0 ) ) |
27 |
18 26
|
mpbird |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
28 |
1 3 5 8 16 17 23 12
|
ellkr2 |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ↔ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = 0 ) ) |
29 |
19 28
|
mpbird |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
30 |
20 15 22 25 27 29
|
lspprss |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |