| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2m.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 2 |  | lclkrlem2m.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 3 |  | lclkrlem2m.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑈 ) | 
						
							| 4 |  | lclkrlem2m.q | ⊢  ×   =  ( .r ‘ 𝑆 ) | 
						
							| 5 |  | lclkrlem2m.z | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 6 |  | lclkrlem2m.i | ⊢ 𝐼  =  ( invr ‘ 𝑆 ) | 
						
							| 7 |  | lclkrlem2m.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 8 |  | lclkrlem2m.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 9 |  | lclkrlem2m.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 10 |  | lclkrlem2m.p | ⊢  +   =  ( +g ‘ 𝐷 ) | 
						
							| 11 |  | lclkrlem2m.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 12 |  | lclkrlem2m.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 13 |  | lclkrlem2m.e | ⊢ ( 𝜑  →  𝐸  ∈  𝐹 ) | 
						
							| 14 |  | lclkrlem2m.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 15 |  | lclkrlem2n.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 16 |  | lclkrlem2n.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 17 |  | lclkrlem2o.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 18 |  | lclkrlem2o.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 19 |  | lclkrlem2o.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 20 |  | lclkrlem2o.a | ⊢  ⊕   =  ( LSSum ‘ 𝑈 ) | 
						
							| 21 |  | lclkrlem2o.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 22 |  | lclkrlem2o.b | ⊢ 𝐵  =  ( 𝑋  −  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) ) | 
						
							| 23 |  | lclkrlem2o.n | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠   0  ) | 
						
							| 24 |  | lclkrlem2o.bn | ⊢ ( 𝜑  →  𝐵  ≠  ( 0g ‘ 𝑈 ) ) | 
						
							| 25 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 26 | 17 19 21 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 26 22 23 | lclkrlem2m | ⊢ ( 𝜑  →  ( 𝐵  ∈  𝑉  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝐵 )  =   0  ) ) | 
						
							| 28 | 27 | simpld | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 29 |  | eldifsn | ⊢ ( 𝐵  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } )  ↔  ( 𝐵  ∈  𝑉  ∧  𝐵  ≠  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 30 | 28 24 29 | sylanbrc | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 31 | 17 18 19 1 25 21 30 | dochnel | ⊢ ( 𝜑  →  ¬  𝐵  ∈  (  ⊥  ‘ { 𝐵 } ) ) | 
						
							| 32 | 17 19 21 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∧  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) )  →  𝑈  ∈  LMod ) | 
						
							| 34 | 28 | snssd | ⊢ ( 𝜑  →  { 𝐵 }  ⊆  𝑉 ) | 
						
							| 35 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 36 | 17 19 1 35 18 | dochlss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝐵 }  ⊆  𝑉 )  →  (  ⊥  ‘ { 𝐵 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 37 | 21 34 36 | syl2anc | ⊢ ( 𝜑  →  (  ⊥  ‘ { 𝐵 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∧  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) )  →  (  ⊥  ‘ { 𝐵 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 39 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∧  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) )  →  𝑋  ∈  (  ⊥  ‘ { 𝐵 } ) ) | 
						
							| 40 | 3 | lmodring | ⊢ ( 𝑈  ∈  LMod  →  𝑆  ∈  Ring ) | 
						
							| 41 | 32 40 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 42 | 8 9 10 32 13 14 | ldualvaddcl | ⊢ ( 𝜑  →  ( 𝐸  +  𝐺 )  ∈  𝐹 ) | 
						
							| 43 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 44 | 3 43 1 8 | lflcl | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝐸  +  𝐺 )  ∈  𝐹  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 45 | 32 42 11 44 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 46 | 3 | lvecdrng | ⊢ ( 𝑈  ∈  LVec  →  𝑆  ∈  DivRing ) | 
						
							| 47 | 26 46 | syl | ⊢ ( 𝜑  →  𝑆  ∈  DivRing ) | 
						
							| 48 | 3 43 1 8 | lflcl | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝐸  +  𝐺 )  ∈  𝐹  ∧  𝑌  ∈  𝑉 )  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 49 | 32 42 12 48 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 50 | 43 5 6 | drnginvrcl | ⊢ ( ( 𝑆  ∈  DivRing  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝑆 )  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠   0  )  →  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 51 | 47 49 23 50 | syl3anc | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 52 | 43 4 | ringcl | ⊢ ( ( 𝑆  ∈  Ring  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) )  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 53 | 41 45 51 52 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∧  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) )  →  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 55 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∧  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) )  →  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) | 
						
							| 56 | 3 2 43 35 | lssvscl | ⊢ ( ( ( 𝑈  ∈  LMod  ∧  (  ⊥  ‘ { 𝐵 } )  ∈  ( LSubSp ‘ 𝑈 ) )  ∧  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ∈  ( Base ‘ 𝑆 )  ∧  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) )  →  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 )  ∈  (  ⊥  ‘ { 𝐵 } ) ) | 
						
							| 57 | 33 38 54 55 56 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∧  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) )  →  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 )  ∈  (  ⊥  ‘ { 𝐵 } ) ) | 
						
							| 58 | 7 35 | lssvsubcl | ⊢ ( ( ( 𝑈  ∈  LMod  ∧  (  ⊥  ‘ { 𝐵 } )  ∈  ( LSubSp ‘ 𝑈 ) )  ∧  ( 𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∧  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 )  ∈  (  ⊥  ‘ { 𝐵 } ) ) )  →  ( 𝑋  −  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) )  ∈  (  ⊥  ‘ { 𝐵 } ) ) | 
						
							| 59 | 33 38 39 57 58 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∧  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) )  →  ( 𝑋  −  ( ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ×  ( 𝐼 ‘ ( ( 𝐸  +  𝐺 ) ‘ 𝑌 ) ) )  ·  𝑌 ) )  ∈  (  ⊥  ‘ { 𝐵 } ) ) | 
						
							| 60 | 22 59 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∧  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) )  →  𝐵  ∈  (  ⊥  ‘ { 𝐵 } ) ) | 
						
							| 61 | 31 60 | mtand | ⊢ ( 𝜑  →  ¬  ( 𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∧  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) ) | 
						
							| 62 |  | ianor | ⊢ ( ¬  ( 𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∧  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) )  ↔  ( ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∨  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) ) | 
						
							| 63 | 61 62 | sylib | ⊢ ( 𝜑  →  ( ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∨  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) ) |