Metamath Proof Explorer


Theorem lclkrlem2o

Description: Lemma for lclkr . When B is nonzero, the vectors X and Y can't both belong to the hyperplane generated by B . (Contributed by NM, 17-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v 𝑉 = ( Base ‘ 𝑈 )
lclkrlem2m.t · = ( ·𝑠𝑈 )
lclkrlem2m.s 𝑆 = ( Scalar ‘ 𝑈 )
lclkrlem2m.q × = ( .r𝑆 )
lclkrlem2m.z 0 = ( 0g𝑆 )
lclkrlem2m.i 𝐼 = ( invr𝑆 )
lclkrlem2m.m = ( -g𝑈 )
lclkrlem2m.f 𝐹 = ( LFnl ‘ 𝑈 )
lclkrlem2m.d 𝐷 = ( LDual ‘ 𝑈 )
lclkrlem2m.p + = ( +g𝐷 )
lclkrlem2m.x ( 𝜑𝑋𝑉 )
lclkrlem2m.y ( 𝜑𝑌𝑉 )
lclkrlem2m.e ( 𝜑𝐸𝐹 )
lclkrlem2m.g ( 𝜑𝐺𝐹 )
lclkrlem2n.n 𝑁 = ( LSpan ‘ 𝑈 )
lclkrlem2n.l 𝐿 = ( LKer ‘ 𝑈 )
lclkrlem2o.h 𝐻 = ( LHyp ‘ 𝐾 )
lclkrlem2o.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem2o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem2o.a = ( LSSum ‘ 𝑈 )
lclkrlem2o.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lclkrlem2o.b 𝐵 = ( 𝑋 ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) )
lclkrlem2o.n ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 )
lclkrlem2o.bn ( 𝜑𝐵 ≠ ( 0g𝑈 ) )
Assertion lclkrlem2o ( 𝜑 → ( ¬ 𝑋 ∈ ( ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ‘ { 𝐵 } ) ) )

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v 𝑉 = ( Base ‘ 𝑈 )
2 lclkrlem2m.t · = ( ·𝑠𝑈 )
3 lclkrlem2m.s 𝑆 = ( Scalar ‘ 𝑈 )
4 lclkrlem2m.q × = ( .r𝑆 )
5 lclkrlem2m.z 0 = ( 0g𝑆 )
6 lclkrlem2m.i 𝐼 = ( invr𝑆 )
7 lclkrlem2m.m = ( -g𝑈 )
8 lclkrlem2m.f 𝐹 = ( LFnl ‘ 𝑈 )
9 lclkrlem2m.d 𝐷 = ( LDual ‘ 𝑈 )
10 lclkrlem2m.p + = ( +g𝐷 )
11 lclkrlem2m.x ( 𝜑𝑋𝑉 )
12 lclkrlem2m.y ( 𝜑𝑌𝑉 )
13 lclkrlem2m.e ( 𝜑𝐸𝐹 )
14 lclkrlem2m.g ( 𝜑𝐺𝐹 )
15 lclkrlem2n.n 𝑁 = ( LSpan ‘ 𝑈 )
16 lclkrlem2n.l 𝐿 = ( LKer ‘ 𝑈 )
17 lclkrlem2o.h 𝐻 = ( LHyp ‘ 𝐾 )
18 lclkrlem2o.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
19 lclkrlem2o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
20 lclkrlem2o.a = ( LSSum ‘ 𝑈 )
21 lclkrlem2o.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
22 lclkrlem2o.b 𝐵 = ( 𝑋 ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) )
23 lclkrlem2o.n ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 )
24 lclkrlem2o.bn ( 𝜑𝐵 ≠ ( 0g𝑈 ) )
25 eqid ( 0g𝑈 ) = ( 0g𝑈 )
26 17 19 21 dvhlvec ( 𝜑𝑈 ∈ LVec )
27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 26 22 23 lclkrlem2m ( 𝜑 → ( 𝐵𝑉 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝐵 ) = 0 ) )
28 27 simpld ( 𝜑𝐵𝑉 )
29 eldifsn ( 𝐵 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) ↔ ( 𝐵𝑉𝐵 ≠ ( 0g𝑈 ) ) )
30 28 24 29 sylanbrc ( 𝜑𝐵 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) )
31 17 18 19 1 25 21 30 dochnel ( 𝜑 → ¬ 𝐵 ∈ ( ‘ { 𝐵 } ) )
32 17 19 21 dvhlmod ( 𝜑𝑈 ∈ LMod )
33 32 adantr ( ( 𝜑 ∧ ( 𝑋 ∈ ( ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ‘ { 𝐵 } ) ) ) → 𝑈 ∈ LMod )
34 28 snssd ( 𝜑 → { 𝐵 } ⊆ 𝑉 )
35 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
36 17 19 1 35 18 dochlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ { 𝐵 } ⊆ 𝑉 ) → ( ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) )
37 21 34 36 syl2anc ( 𝜑 → ( ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) )
38 37 adantr ( ( 𝜑 ∧ ( 𝑋 ∈ ( ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ‘ { 𝐵 } ) ) ) → ( ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) )
39 simprl ( ( 𝜑 ∧ ( 𝑋 ∈ ( ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ‘ { 𝐵 } ) ) ) → 𝑋 ∈ ( ‘ { 𝐵 } ) )
40 3 lmodring ( 𝑈 ∈ LMod → 𝑆 ∈ Ring )
41 32 40 syl ( 𝜑𝑆 ∈ Ring )
42 8 9 10 32 13 14 ldualvaddcl ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐹 )
43 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
44 3 43 1 8 lflcl ( ( 𝑈 ∈ LMod ∧ ( 𝐸 + 𝐺 ) ∈ 𝐹𝑋𝑉 ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) )
45 32 42 11 44 syl3anc ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) )
46 3 lvecdrng ( 𝑈 ∈ LVec → 𝑆 ∈ DivRing )
47 26 46 syl ( 𝜑𝑆 ∈ DivRing )
48 3 43 1 8 lflcl ( ( 𝑈 ∈ LMod ∧ ( 𝐸 + 𝐺 ) ∈ 𝐹𝑌𝑉 ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) )
49 32 42 12 48 syl3anc ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) )
50 43 5 6 drnginvrcl ( ( 𝑆 ∈ DivRing ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 ) → ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝑆 ) )
51 47 49 23 50 syl3anc ( 𝜑 → ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝑆 ) )
52 43 4 ringcl ( ( 𝑆 ∈ Ring ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝑆 ) ) → ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) )
53 41 45 51 52 syl3anc ( 𝜑 → ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) )
54 53 adantr ( ( 𝜑 ∧ ( 𝑋 ∈ ( ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ‘ { 𝐵 } ) ) ) → ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) )
55 simprr ( ( 𝜑 ∧ ( 𝑋 ∈ ( ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ‘ { 𝐵 } ) ) ) → 𝑌 ∈ ( ‘ { 𝐵 } ) )
56 3 2 43 35 lssvscl ( ( ( 𝑈 ∈ LMod ∧ ( ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) ) ∧ ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑌 ∈ ( ‘ { 𝐵 } ) ) ) → ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ∈ ( ‘ { 𝐵 } ) )
57 33 38 54 55 56 syl22anc ( ( 𝜑 ∧ ( 𝑋 ∈ ( ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ‘ { 𝐵 } ) ) ) → ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ∈ ( ‘ { 𝐵 } ) )
58 7 35 lssvsubcl ( ( ( 𝑈 ∈ LMod ∧ ( ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) ) ∧ ( 𝑋 ∈ ( ‘ { 𝐵 } ) ∧ ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ∈ ( ‘ { 𝐵 } ) ) ) → ( 𝑋 ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ∈ ( ‘ { 𝐵 } ) )
59 33 38 39 57 58 syl22anc ( ( 𝜑 ∧ ( 𝑋 ∈ ( ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ‘ { 𝐵 } ) ) ) → ( 𝑋 ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ∈ ( ‘ { 𝐵 } ) )
60 22 59 eqeltrid ( ( 𝜑 ∧ ( 𝑋 ∈ ( ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ‘ { 𝐵 } ) ) ) → 𝐵 ∈ ( ‘ { 𝐵 } ) )
61 31 60 mtand ( 𝜑 → ¬ ( 𝑋 ∈ ( ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ‘ { 𝐵 } ) ) )
62 ianor ( ¬ ( 𝑋 ∈ ( ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ‘ { 𝐵 } ) ) ↔ ( ¬ 𝑋 ∈ ( ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ‘ { 𝐵 } ) ) )
63 61 62 sylib ( 𝜑 → ( ¬ 𝑋 ∈ ( ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ‘ { 𝐵 } ) ) )