Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2m.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
2 |
|
lclkrlem2m.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
3 |
|
lclkrlem2m.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
4 |
|
lclkrlem2m.q |
⊢ × = ( .r ‘ 𝑆 ) |
5 |
|
lclkrlem2m.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
6 |
|
lclkrlem2m.i |
⊢ 𝐼 = ( invr ‘ 𝑆 ) |
7 |
|
lclkrlem2m.m |
⊢ − = ( -g ‘ 𝑈 ) |
8 |
|
lclkrlem2m.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
9 |
|
lclkrlem2m.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
10 |
|
lclkrlem2m.p |
⊢ + = ( +g ‘ 𝐷 ) |
11 |
|
lclkrlem2m.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
12 |
|
lclkrlem2m.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
13 |
|
lclkrlem2m.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
14 |
|
lclkrlem2m.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
15 |
|
lclkrlem2n.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
16 |
|
lclkrlem2n.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
17 |
|
lclkrlem2o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
18 |
|
lclkrlem2o.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
19 |
|
lclkrlem2o.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
20 |
|
lclkrlem2o.a |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
21 |
|
lclkrlem2o.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
22 |
|
lclkrlem2o.b |
⊢ 𝐵 = ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) |
23 |
|
lclkrlem2o.n |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 ) |
24 |
|
lclkrlem2o.bn |
⊢ ( 𝜑 → 𝐵 ≠ ( 0g ‘ 𝑈 ) ) |
25 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
26 |
17 19 21
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 26 22 23
|
lclkrlem2m |
⊢ ( 𝜑 → ( 𝐵 ∈ 𝑉 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝐵 ) = 0 ) ) |
28 |
27
|
simpld |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
29 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ↔ ( 𝐵 ∈ 𝑉 ∧ 𝐵 ≠ ( 0g ‘ 𝑈 ) ) ) |
30 |
28 24 29
|
sylanbrc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
31 |
17 18 19 1 25 21 30
|
dochnel |
⊢ ( 𝜑 → ¬ 𝐵 ∈ ( ⊥ ‘ { 𝐵 } ) ) |
32 |
17 19 21
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) → 𝑈 ∈ LMod ) |
34 |
28
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ 𝑉 ) |
35 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
36 |
17 19 1 35 18
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝐵 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
37 |
21 34 36
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ⊥ ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
39 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) → 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ) |
40 |
3
|
lmodring |
⊢ ( 𝑈 ∈ LMod → 𝑆 ∈ Ring ) |
41 |
32 40
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
42 |
8 9 10 32 13 14
|
ldualvaddcl |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐹 ) |
43 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
44 |
3 43 1 8
|
lflcl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐸 + 𝐺 ) ∈ 𝐹 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
45 |
32 42 11 44
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
46 |
3
|
lvecdrng |
⊢ ( 𝑈 ∈ LVec → 𝑆 ∈ DivRing ) |
47 |
26 46
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ DivRing ) |
48 |
3 43 1 8
|
lflcl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐸 + 𝐺 ) ∈ 𝐹 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) ) |
49 |
32 42 12 48
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) ) |
50 |
43 5 6
|
drnginvrcl |
⊢ ( ( 𝑆 ∈ DivRing ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 ) → ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝑆 ) ) |
51 |
47 49 23 50
|
syl3anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝑆 ) ) |
52 |
43 4
|
ringcl |
⊢ ( ( 𝑆 ∈ Ring ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝑆 ) ) → ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
53 |
41 45 51 52
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
55 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) → 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) |
56 |
3 2 43 35
|
lssvscl |
⊢ ( ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) ) ∧ ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ∈ ( ⊥ ‘ { 𝐵 } ) ) |
57 |
33 38 54 55 56
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ∈ ( ⊥ ‘ { 𝐵 } ) ) |
58 |
7 35
|
lssvsubcl |
⊢ ( ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) ) ∧ ( 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∧ ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ∈ ( ⊥ ‘ { 𝐵 } ) ) ) → ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ∈ ( ⊥ ‘ { 𝐵 } ) ) |
59 |
33 38 39 57 58
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) → ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ∈ ( ⊥ ‘ { 𝐵 } ) ) |
60 |
22 59
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) → 𝐵 ∈ ( ⊥ ‘ { 𝐵 } ) ) |
61 |
31 60
|
mtand |
⊢ ( 𝜑 → ¬ ( 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) |
62 |
|
ianor |
⊢ ( ¬ ( 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∧ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) |
63 |
61 62
|
sylib |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) |