| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2m.v |  | 
						
							| 2 |  | lclkrlem2m.t |  | 
						
							| 3 |  | lclkrlem2m.s |  | 
						
							| 4 |  | lclkrlem2m.q |  | 
						
							| 5 |  | lclkrlem2m.z |  | 
						
							| 6 |  | lclkrlem2m.i |  | 
						
							| 7 |  | lclkrlem2m.m |  | 
						
							| 8 |  | lclkrlem2m.f |  | 
						
							| 9 |  | lclkrlem2m.d |  | 
						
							| 10 |  | lclkrlem2m.p |  | 
						
							| 11 |  | lclkrlem2m.x |  | 
						
							| 12 |  | lclkrlem2m.y |  | 
						
							| 13 |  | lclkrlem2m.e |  | 
						
							| 14 |  | lclkrlem2m.g |  | 
						
							| 15 |  | lclkrlem2n.n |  | 
						
							| 16 |  | lclkrlem2n.l |  | 
						
							| 17 |  | lclkrlem2o.h |  | 
						
							| 18 |  | lclkrlem2o.o |  | 
						
							| 19 |  | lclkrlem2o.u |  | 
						
							| 20 |  | lclkrlem2o.a |  | 
						
							| 21 |  | lclkrlem2o.k |  | 
						
							| 22 |  | lclkrlem2o.b |  | 
						
							| 23 |  | lclkrlem2o.n |  | 
						
							| 24 |  | lclkrlem2o.bn |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 17 19 21 | dvhlvec |  | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 26 22 23 | lclkrlem2m |  | 
						
							| 28 | 27 | simpld |  | 
						
							| 29 |  | eldifsn |  | 
						
							| 30 | 28 24 29 | sylanbrc |  | 
						
							| 31 | 17 18 19 1 25 21 30 | dochnel |  | 
						
							| 32 | 17 19 21 | dvhlmod |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 | 28 | snssd |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 17 19 1 35 18 | dochlss |  | 
						
							| 37 | 21 34 36 | syl2anc |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 |  | simprl |  | 
						
							| 40 | 3 | lmodring |  | 
						
							| 41 | 32 40 | syl |  | 
						
							| 42 | 8 9 10 32 13 14 | ldualvaddcl |  | 
						
							| 43 |  | eqid |  | 
						
							| 44 | 3 43 1 8 | lflcl |  | 
						
							| 45 | 32 42 11 44 | syl3anc |  | 
						
							| 46 | 3 | lvecdrng |  | 
						
							| 47 | 26 46 | syl |  | 
						
							| 48 | 3 43 1 8 | lflcl |  | 
						
							| 49 | 32 42 12 48 | syl3anc |  | 
						
							| 50 | 43 5 6 | drnginvrcl |  | 
						
							| 51 | 47 49 23 50 | syl3anc |  | 
						
							| 52 | 43 4 | ringcl |  | 
						
							| 53 | 41 45 51 52 | syl3anc |  | 
						
							| 54 | 53 | adantr |  | 
						
							| 55 |  | simprr |  | 
						
							| 56 | 3 2 43 35 | lssvscl |  | 
						
							| 57 | 33 38 54 55 56 | syl22anc |  | 
						
							| 58 | 7 35 | lssvsubcl |  | 
						
							| 59 | 33 38 39 57 58 | syl22anc |  | 
						
							| 60 | 22 59 | eqeltrid |  | 
						
							| 61 | 31 60 | mtand |  | 
						
							| 62 |  | ianor |  | 
						
							| 63 | 61 62 | sylib |  |