| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2m.v |
|
| 2 |
|
lclkrlem2m.t |
|
| 3 |
|
lclkrlem2m.s |
|
| 4 |
|
lclkrlem2m.q |
|
| 5 |
|
lclkrlem2m.z |
|
| 6 |
|
lclkrlem2m.i |
|
| 7 |
|
lclkrlem2m.m |
|
| 8 |
|
lclkrlem2m.f |
|
| 9 |
|
lclkrlem2m.d |
|
| 10 |
|
lclkrlem2m.p |
|
| 11 |
|
lclkrlem2m.x |
|
| 12 |
|
lclkrlem2m.y |
|
| 13 |
|
lclkrlem2m.e |
|
| 14 |
|
lclkrlem2m.g |
|
| 15 |
|
lclkrlem2n.n |
|
| 16 |
|
lclkrlem2n.l |
|
| 17 |
|
lclkrlem2o.h |
|
| 18 |
|
lclkrlem2o.o |
|
| 19 |
|
lclkrlem2o.u |
|
| 20 |
|
lclkrlem2o.a |
|
| 21 |
|
lclkrlem2o.k |
|
| 22 |
|
lclkrlem2o.b |
|
| 23 |
|
lclkrlem2o.n |
|
| 24 |
|
lclkrlem2o.bn |
|
| 25 |
|
eqid |
|
| 26 |
17 19 21
|
dvhlvec |
|
| 27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 26 22 23
|
lclkrlem2m |
|
| 28 |
27
|
simpld |
|
| 29 |
|
eldifsn |
|
| 30 |
28 24 29
|
sylanbrc |
|
| 31 |
17 18 19 1 25 21 30
|
dochnel |
|
| 32 |
17 19 21
|
dvhlmod |
|
| 33 |
32
|
adantr |
|
| 34 |
28
|
snssd |
|
| 35 |
|
eqid |
|
| 36 |
17 19 1 35 18
|
dochlss |
|
| 37 |
21 34 36
|
syl2anc |
|
| 38 |
37
|
adantr |
|
| 39 |
|
simprl |
|
| 40 |
3
|
lmodring |
|
| 41 |
32 40
|
syl |
|
| 42 |
8 9 10 32 13 14
|
ldualvaddcl |
|
| 43 |
|
eqid |
|
| 44 |
3 43 1 8
|
lflcl |
|
| 45 |
32 42 11 44
|
syl3anc |
|
| 46 |
3
|
lvecdrng |
|
| 47 |
26 46
|
syl |
|
| 48 |
3 43 1 8
|
lflcl |
|
| 49 |
32 42 12 48
|
syl3anc |
|
| 50 |
43 5 6
|
drnginvrcl |
|
| 51 |
47 49 23 50
|
syl3anc |
|
| 52 |
43 4
|
ringcl |
|
| 53 |
41 45 51 52
|
syl3anc |
|
| 54 |
53
|
adantr |
|
| 55 |
|
simprr |
|
| 56 |
3 2 43 35
|
lssvscl |
|
| 57 |
33 38 54 55 56
|
syl22anc |
|
| 58 |
7 35
|
lssvsubcl |
|
| 59 |
33 38 39 57 58
|
syl22anc |
|
| 60 |
22 59
|
eqeltrid |
|
| 61 |
31 60
|
mtand |
|
| 62 |
|
ianor |
|
| 63 |
61 62
|
sylib |
|