| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2m.v |
|
| 2 |
|
lclkrlem2m.t |
|
| 3 |
|
lclkrlem2m.s |
|
| 4 |
|
lclkrlem2m.q |
|
| 5 |
|
lclkrlem2m.z |
|
| 6 |
|
lclkrlem2m.i |
|
| 7 |
|
lclkrlem2m.m |
|
| 8 |
|
lclkrlem2m.f |
|
| 9 |
|
lclkrlem2m.d |
|
| 10 |
|
lclkrlem2m.p |
|
| 11 |
|
lclkrlem2m.x |
|
| 12 |
|
lclkrlem2m.y |
|
| 13 |
|
lclkrlem2m.e |
|
| 14 |
|
lclkrlem2m.g |
|
| 15 |
|
lclkrlem2m.w |
|
| 16 |
|
lclkrlem2m.b |
|
| 17 |
|
lclkrlem2m.n |
|
| 18 |
|
lveclmod |
|
| 19 |
15 18
|
syl |
|
| 20 |
|
lmodgrp |
|
| 21 |
19 20
|
syl |
|
| 22 |
3
|
lmodring |
|
| 23 |
19 22
|
syl |
|
| 24 |
8 9 10 19 13 14
|
ldualvaddcl |
|
| 25 |
|
eqid |
|
| 26 |
3 25 1 8
|
lflcl |
|
| 27 |
15 24 11 26
|
syl3anc |
|
| 28 |
3
|
lvecdrng |
|
| 29 |
15 28
|
syl |
|
| 30 |
3 25 1 8
|
lflcl |
|
| 31 |
15 24 12 30
|
syl3anc |
|
| 32 |
25 5 6
|
drnginvrcl |
|
| 33 |
29 31 17 32
|
syl3anc |
|
| 34 |
25 4
|
ringcl |
|
| 35 |
23 27 33 34
|
syl3anc |
|
| 36 |
1 3 2 25
|
lmodvscl |
|
| 37 |
19 35 12 36
|
syl3anc |
|
| 38 |
1 7
|
grpsubcl |
|
| 39 |
21 11 37 38
|
syl3anc |
|
| 40 |
16 39
|
eqeltrid |
|
| 41 |
16
|
fveq2i |
|
| 42 |
|
eqid |
|
| 43 |
3 42 1 7 8
|
lflsub |
|
| 44 |
19 24 11 37 43
|
syl112anc |
|
| 45 |
3 25 4 1 2 8
|
lflmul |
|
| 46 |
19 24 35 12 45
|
syl112anc |
|
| 47 |
25 4
|
ringass |
|
| 48 |
23 27 33 31 47
|
syl13anc |
|
| 49 |
|
eqid |
|
| 50 |
25 5 4 49 6
|
drnginvrl |
|
| 51 |
29 31 17 50
|
syl3anc |
|
| 52 |
51
|
oveq2d |
|
| 53 |
48 52
|
eqtrd |
|
| 54 |
25 4 49
|
ringridm |
|
| 55 |
23 27 54
|
syl2anc |
|
| 56 |
46 53 55
|
3eqtrd |
|
| 57 |
56
|
oveq2d |
|
| 58 |
|
ringgrp |
|
| 59 |
23 58
|
syl |
|
| 60 |
25 5 42
|
grpsubid |
|
| 61 |
59 27 60
|
syl2anc |
|
| 62 |
44 57 61
|
3eqtrd |
|
| 63 |
41 62
|
eqtrid |
|
| 64 |
40 63
|
jca |
|