Metamath Proof Explorer


Theorem lclkrlem2n

Description: Lemma for lclkr . (Contributed by NM, 12-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v V = Base U
lclkrlem2m.t · ˙ = U
lclkrlem2m.s S = Scalar U
lclkrlem2m.q × ˙ = S
lclkrlem2m.z 0 ˙ = 0 S
lclkrlem2m.i I = inv r S
lclkrlem2m.m - ˙ = - U
lclkrlem2m.f F = LFnl U
lclkrlem2m.d D = LDual U
lclkrlem2m.p + ˙ = + D
lclkrlem2m.x φ X V
lclkrlem2m.y φ Y V
lclkrlem2m.e φ E F
lclkrlem2m.g φ G F
lclkrlem2n.n N = LSpan U
lclkrlem2n.l L = LKer U
lclkrlem2n.w φ U LVec
lclkrlem2n.j φ E + ˙ G X = 0 ˙
lclkrlem2n.k φ E + ˙ G Y = 0 ˙
Assertion lclkrlem2n φ N X Y L E + ˙ G

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v V = Base U
2 lclkrlem2m.t · ˙ = U
3 lclkrlem2m.s S = Scalar U
4 lclkrlem2m.q × ˙ = S
5 lclkrlem2m.z 0 ˙ = 0 S
6 lclkrlem2m.i I = inv r S
7 lclkrlem2m.m - ˙ = - U
8 lclkrlem2m.f F = LFnl U
9 lclkrlem2m.d D = LDual U
10 lclkrlem2m.p + ˙ = + D
11 lclkrlem2m.x φ X V
12 lclkrlem2m.y φ Y V
13 lclkrlem2m.e φ E F
14 lclkrlem2m.g φ G F
15 lclkrlem2n.n N = LSpan U
16 lclkrlem2n.l L = LKer U
17 lclkrlem2n.w φ U LVec
18 lclkrlem2n.j φ E + ˙ G X = 0 ˙
19 lclkrlem2n.k φ E + ˙ G Y = 0 ˙
20 eqid LSubSp U = LSubSp U
21 lveclmod U LVec U LMod
22 17 21 syl φ U LMod
23 8 9 10 22 13 14 ldualvaddcl φ E + ˙ G F
24 8 16 20 lkrlss U LMod E + ˙ G F L E + ˙ G LSubSp U
25 22 23 24 syl2anc φ L E + ˙ G LSubSp U
26 1 3 5 8 16 17 23 11 ellkr2 φ X L E + ˙ G E + ˙ G X = 0 ˙
27 18 26 mpbird φ X L E + ˙ G
28 1 3 5 8 16 17 23 12 ellkr2 φ Y L E + ˙ G E + ˙ G Y = 0 ˙
29 19 28 mpbird φ Y L E + ˙ G
30 20 15 22 25 27 29 lspprss φ N X Y L E + ˙ G