Metamath Proof Explorer


Theorem lclkrlem2n

Description: Lemma for lclkr . (Contributed by NM, 12-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v
|- V = ( Base ` U )
lclkrlem2m.t
|- .x. = ( .s ` U )
lclkrlem2m.s
|- S = ( Scalar ` U )
lclkrlem2m.q
|- .X. = ( .r ` S )
lclkrlem2m.z
|- .0. = ( 0g ` S )
lclkrlem2m.i
|- I = ( invr ` S )
lclkrlem2m.m
|- .- = ( -g ` U )
lclkrlem2m.f
|- F = ( LFnl ` U )
lclkrlem2m.d
|- D = ( LDual ` U )
lclkrlem2m.p
|- .+ = ( +g ` D )
lclkrlem2m.x
|- ( ph -> X e. V )
lclkrlem2m.y
|- ( ph -> Y e. V )
lclkrlem2m.e
|- ( ph -> E e. F )
lclkrlem2m.g
|- ( ph -> G e. F )
lclkrlem2n.n
|- N = ( LSpan ` U )
lclkrlem2n.l
|- L = ( LKer ` U )
lclkrlem2n.w
|- ( ph -> U e. LVec )
lclkrlem2n.j
|- ( ph -> ( ( E .+ G ) ` X ) = .0. )
lclkrlem2n.k
|- ( ph -> ( ( E .+ G ) ` Y ) = .0. )
Assertion lclkrlem2n
|- ( ph -> ( N ` { X , Y } ) C_ ( L ` ( E .+ G ) ) )

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v
 |-  V = ( Base ` U )
2 lclkrlem2m.t
 |-  .x. = ( .s ` U )
3 lclkrlem2m.s
 |-  S = ( Scalar ` U )
4 lclkrlem2m.q
 |-  .X. = ( .r ` S )
5 lclkrlem2m.z
 |-  .0. = ( 0g ` S )
6 lclkrlem2m.i
 |-  I = ( invr ` S )
7 lclkrlem2m.m
 |-  .- = ( -g ` U )
8 lclkrlem2m.f
 |-  F = ( LFnl ` U )
9 lclkrlem2m.d
 |-  D = ( LDual ` U )
10 lclkrlem2m.p
 |-  .+ = ( +g ` D )
11 lclkrlem2m.x
 |-  ( ph -> X e. V )
12 lclkrlem2m.y
 |-  ( ph -> Y e. V )
13 lclkrlem2m.e
 |-  ( ph -> E e. F )
14 lclkrlem2m.g
 |-  ( ph -> G e. F )
15 lclkrlem2n.n
 |-  N = ( LSpan ` U )
16 lclkrlem2n.l
 |-  L = ( LKer ` U )
17 lclkrlem2n.w
 |-  ( ph -> U e. LVec )
18 lclkrlem2n.j
 |-  ( ph -> ( ( E .+ G ) ` X ) = .0. )
19 lclkrlem2n.k
 |-  ( ph -> ( ( E .+ G ) ` Y ) = .0. )
20 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
21 lveclmod
 |-  ( U e. LVec -> U e. LMod )
22 17 21 syl
 |-  ( ph -> U e. LMod )
23 8 9 10 22 13 14 ldualvaddcl
 |-  ( ph -> ( E .+ G ) e. F )
24 8 16 20 lkrlss
 |-  ( ( U e. LMod /\ ( E .+ G ) e. F ) -> ( L ` ( E .+ G ) ) e. ( LSubSp ` U ) )
25 22 23 24 syl2anc
 |-  ( ph -> ( L ` ( E .+ G ) ) e. ( LSubSp ` U ) )
26 1 3 5 8 16 17 23 11 ellkr2
 |-  ( ph -> ( X e. ( L ` ( E .+ G ) ) <-> ( ( E .+ G ) ` X ) = .0. ) )
27 18 26 mpbird
 |-  ( ph -> X e. ( L ` ( E .+ G ) ) )
28 1 3 5 8 16 17 23 12 ellkr2
 |-  ( ph -> ( Y e. ( L ` ( E .+ G ) ) <-> ( ( E .+ G ) ` Y ) = .0. ) )
29 19 28 mpbird
 |-  ( ph -> Y e. ( L ` ( E .+ G ) ) )
30 20 15 22 25 27 29 lspprss
 |-  ( ph -> ( N ` { X , Y } ) C_ ( L ` ( E .+ G ) ) )