| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2m.v |  |-  V = ( Base ` U ) | 
						
							| 2 |  | lclkrlem2m.t |  |-  .x. = ( .s ` U ) | 
						
							| 3 |  | lclkrlem2m.s |  |-  S = ( Scalar ` U ) | 
						
							| 4 |  | lclkrlem2m.q |  |-  .X. = ( .r ` S ) | 
						
							| 5 |  | lclkrlem2m.z |  |-  .0. = ( 0g ` S ) | 
						
							| 6 |  | lclkrlem2m.i |  |-  I = ( invr ` S ) | 
						
							| 7 |  | lclkrlem2m.m |  |-  .- = ( -g ` U ) | 
						
							| 8 |  | lclkrlem2m.f |  |-  F = ( LFnl ` U ) | 
						
							| 9 |  | lclkrlem2m.d |  |-  D = ( LDual ` U ) | 
						
							| 10 |  | lclkrlem2m.p |  |-  .+ = ( +g ` D ) | 
						
							| 11 |  | lclkrlem2m.x |  |-  ( ph -> X e. V ) | 
						
							| 12 |  | lclkrlem2m.y |  |-  ( ph -> Y e. V ) | 
						
							| 13 |  | lclkrlem2m.e |  |-  ( ph -> E e. F ) | 
						
							| 14 |  | lclkrlem2m.g |  |-  ( ph -> G e. F ) | 
						
							| 15 |  | lclkrlem2n.n |  |-  N = ( LSpan ` U ) | 
						
							| 16 |  | lclkrlem2n.l |  |-  L = ( LKer ` U ) | 
						
							| 17 |  | lclkrlem2n.w |  |-  ( ph -> U e. LVec ) | 
						
							| 18 |  | lclkrlem2n.j |  |-  ( ph -> ( ( E .+ G ) ` X ) = .0. ) | 
						
							| 19 |  | lclkrlem2n.k |  |-  ( ph -> ( ( E .+ G ) ` Y ) = .0. ) | 
						
							| 20 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 21 |  | lveclmod |  |-  ( U e. LVec -> U e. LMod ) | 
						
							| 22 | 17 21 | syl |  |-  ( ph -> U e. LMod ) | 
						
							| 23 | 8 9 10 22 13 14 | ldualvaddcl |  |-  ( ph -> ( E .+ G ) e. F ) | 
						
							| 24 | 8 16 20 | lkrlss |  |-  ( ( U e. LMod /\ ( E .+ G ) e. F ) -> ( L ` ( E .+ G ) ) e. ( LSubSp ` U ) ) | 
						
							| 25 | 22 23 24 | syl2anc |  |-  ( ph -> ( L ` ( E .+ G ) ) e. ( LSubSp ` U ) ) | 
						
							| 26 | 1 3 5 8 16 17 23 11 | ellkr2 |  |-  ( ph -> ( X e. ( L ` ( E .+ G ) ) <-> ( ( E .+ G ) ` X ) = .0. ) ) | 
						
							| 27 | 18 26 | mpbird |  |-  ( ph -> X e. ( L ` ( E .+ G ) ) ) | 
						
							| 28 | 1 3 5 8 16 17 23 12 | ellkr2 |  |-  ( ph -> ( Y e. ( L ` ( E .+ G ) ) <-> ( ( E .+ G ) ` Y ) = .0. ) ) | 
						
							| 29 | 19 28 | mpbird |  |-  ( ph -> Y e. ( L ` ( E .+ G ) ) ) | 
						
							| 30 | 20 15 22 25 27 29 | lspprss |  |-  ( ph -> ( N ` { X , Y } ) C_ ( L ` ( E .+ G ) ) ) |