Description: The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspprss.s | |- S = ( LSubSp ` W ) |
|
lspprss.n | |- N = ( LSpan ` W ) |
||
lspprss.w | |- ( ph -> W e. LMod ) |
||
lspprss.u | |- ( ph -> U e. S ) |
||
lspprss.x | |- ( ph -> X e. U ) |
||
lspprss.y | |- ( ph -> Y e. U ) |
||
Assertion | lspprss | |- ( ph -> ( N ` { X , Y } ) C_ U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprss.s | |- S = ( LSubSp ` W ) |
|
2 | lspprss.n | |- N = ( LSpan ` W ) |
|
3 | lspprss.w | |- ( ph -> W e. LMod ) |
|
4 | lspprss.u | |- ( ph -> U e. S ) |
|
5 | lspprss.x | |- ( ph -> X e. U ) |
|
6 | lspprss.y | |- ( ph -> Y e. U ) |
|
7 | 5 6 | prssd | |- ( ph -> { X , Y } C_ U ) |
8 | 1 2 | lspssp | |- ( ( W e. LMod /\ U e. S /\ { X , Y } C_ U ) -> ( N ` { X , Y } ) C_ U ) |
9 | 3 4 7 8 | syl3anc | |- ( ph -> ( N ` { X , Y } ) C_ U ) |