Metamath Proof Explorer


Theorem lspprss

Description: The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015)

Ref Expression
Hypotheses lspprss.s
|- S = ( LSubSp ` W )
lspprss.n
|- N = ( LSpan ` W )
lspprss.w
|- ( ph -> W e. LMod )
lspprss.u
|- ( ph -> U e. S )
lspprss.x
|- ( ph -> X e. U )
lspprss.y
|- ( ph -> Y e. U )
Assertion lspprss
|- ( ph -> ( N ` { X , Y } ) C_ U )

Proof

Step Hyp Ref Expression
1 lspprss.s
 |-  S = ( LSubSp ` W )
2 lspprss.n
 |-  N = ( LSpan ` W )
3 lspprss.w
 |-  ( ph -> W e. LMod )
4 lspprss.u
 |-  ( ph -> U e. S )
5 lspprss.x
 |-  ( ph -> X e. U )
6 lspprss.y
 |-  ( ph -> Y e. U )
7 5 6 prssd
 |-  ( ph -> { X , Y } C_ U )
8 1 2 lspssp
 |-  ( ( W e. LMod /\ U e. S /\ { X , Y } C_ U ) -> ( N ` { X , Y } ) C_ U )
9 3 4 7 8 syl3anc
 |-  ( ph -> ( N ` { X , Y } ) C_ U )