Description: The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprss.s | |- S = ( LSubSp ` W ) |
|
| lspprss.n | |- N = ( LSpan ` W ) |
||
| lspprss.w | |- ( ph -> W e. LMod ) |
||
| lspprss.u | |- ( ph -> U e. S ) |
||
| lspprss.x | |- ( ph -> X e. U ) |
||
| lspprss.y | |- ( ph -> Y e. U ) |
||
| Assertion | lspprss | |- ( ph -> ( N ` { X , Y } ) C_ U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprss.s | |- S = ( LSubSp ` W ) |
|
| 2 | lspprss.n | |- N = ( LSpan ` W ) |
|
| 3 | lspprss.w | |- ( ph -> W e. LMod ) |
|
| 4 | lspprss.u | |- ( ph -> U e. S ) |
|
| 5 | lspprss.x | |- ( ph -> X e. U ) |
|
| 6 | lspprss.y | |- ( ph -> Y e. U ) |
|
| 7 | 5 6 | prssd | |- ( ph -> { X , Y } C_ U ) |
| 8 | 1 2 | lspssp | |- ( ( W e. LMod /\ U e. S /\ { X , Y } C_ U ) -> ( N ` { X , Y } ) C_ U ) |
| 9 | 3 4 7 8 | syl3anc | |- ( ph -> ( N ` { X , Y } ) C_ U ) |