Metamath Proof Explorer


Theorem lclkr

Description: The set of functionals with closed kernels is a subspace. Part of proof of Theorem 3.6 of Holland95 p. 218, line 20, stating "The f_M that arise this way generate a subspace F of E'". Our proof was suggested by Mario Carneiro, 5-Jan-2015. (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkr.h
|- H = ( LHyp ` K )
lclkr.u
|- U = ( ( DVecH ` K ) ` W )
lclkr.o
|- ._|_ = ( ( ocH ` K ) ` W )
lclkr.f
|- F = ( LFnl ` U )
lclkr.l
|- L = ( LKer ` U )
lclkr.d
|- D = ( LDual ` U )
lclkr.s
|- S = ( LSubSp ` D )
lclkr.c
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
lclkr.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion lclkr
|- ( ph -> C e. S )

Proof

Step Hyp Ref Expression
1 lclkr.h
 |-  H = ( LHyp ` K )
2 lclkr.u
 |-  U = ( ( DVecH ` K ) ` W )
3 lclkr.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
4 lclkr.f
 |-  F = ( LFnl ` U )
5 lclkr.l
 |-  L = ( LKer ` U )
6 lclkr.d
 |-  D = ( LDual ` U )
7 lclkr.s
 |-  S = ( LSubSp ` D )
8 lclkr.c
 |-  C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
9 lclkr.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 ssrab2
 |-  { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } C_ F
11 10 a1i
 |-  ( ph -> { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } C_ F )
12 8 a1i
 |-  ( ph -> C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } )
13 eqid
 |-  ( Base ` D ) = ( Base ` D )
14 1 2 9 dvhlmod
 |-  ( ph -> U e. LMod )
15 4 6 13 14 ldualvbase
 |-  ( ph -> ( Base ` D ) = F )
16 11 12 15 3sstr4d
 |-  ( ph -> C C_ ( Base ` D ) )
17 eqid
 |-  ( Scalar ` U ) = ( Scalar ` U )
18 eqid
 |-  ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) )
19 eqid
 |-  ( Base ` U ) = ( Base ` U )
20 17 18 19 4 lfl0f
 |-  ( U e. LMod -> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. F )
21 14 20 syl
 |-  ( ph -> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. F )
22 1 2 3 19 9 dochoc1
 |-  ( ph -> ( ._|_ ` ( ._|_ ` ( Base ` U ) ) ) = ( Base ` U ) )
23 eqid
 |-  ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) = ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } )
24 17 18 19 4 5 lkr0f
 |-  ( ( U e. LMod /\ ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. F ) -> ( ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) = ( Base ` U ) <-> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) = ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) )
25 14 20 24 syl2anc2
 |-  ( ph -> ( ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) = ( Base ` U ) <-> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) = ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) )
26 23 25 mpbiri
 |-  ( ph -> ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) = ( Base ` U ) )
27 26 fveq2d
 |-  ( ph -> ( ._|_ ` ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) = ( ._|_ ` ( Base ` U ) ) )
28 27 fveq2d
 |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) ) = ( ._|_ ` ( ._|_ ` ( Base ` U ) ) ) )
29 22 28 26 3eqtr4d
 |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) ) = ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) )
30 8 lcfl1lem
 |-  ( ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. C <-> ( ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. F /\ ( ._|_ ` ( ._|_ ` ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) ) = ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) )
31 21 29 30 sylanbrc
 |-  ( ph -> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. C )
32 31 ne0d
 |-  ( ph -> C =/= (/) )
33 eqid
 |-  ( +g ` D ) = ( +g ` D )
34 9 adantr
 |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> ( K e. HL /\ W e. H ) )
35 eqid
 |-  ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) )
36 eqid
 |-  ( .s ` D ) = ( .s ` D )
37 simpr1
 |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> x e. ( Base ` ( Scalar ` D ) ) )
38 eqid
 |-  ( Scalar ` D ) = ( Scalar ` D )
39 eqid
 |-  ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` D ) )
40 17 35 6 38 39 14 ldualsbase
 |-  ( ph -> ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` U ) ) )
41 40 adantr
 |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` U ) ) )
42 37 41 eleqtrd
 |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> x e. ( Base ` ( Scalar ` U ) ) )
43 simpr2
 |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> a e. C )
44 1 3 2 4 5 6 17 35 36 8 34 42 43 lclkrlem1
 |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> ( x ( .s ` D ) a ) e. C )
45 simpr3
 |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> b e. C )
46 1 3 2 4 5 6 33 8 34 44 45 lclkrlem2
 |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> ( ( x ( .s ` D ) a ) ( +g ` D ) b ) e. C )
47 46 ralrimivvva
 |-  ( ph -> A. x e. ( Base ` ( Scalar ` D ) ) A. a e. C A. b e. C ( ( x ( .s ` D ) a ) ( +g ` D ) b ) e. C )
48 38 39 13 33 36 7 islss
 |-  ( C e. S <-> ( C C_ ( Base ` D ) /\ C =/= (/) /\ A. x e. ( Base ` ( Scalar ` D ) ) A. a e. C A. b e. C ( ( x ( .s ` D ) a ) ( +g ` D ) b ) e. C ) )
49 16 32 47 48 syl3anbrc
 |-  ( ph -> C e. S )