Step |
Hyp |
Ref |
Expression |
1 |
|
lclkr.h |
|- H = ( LHyp ` K ) |
2 |
|
lclkr.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
lclkr.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
4 |
|
lclkr.f |
|- F = ( LFnl ` U ) |
5 |
|
lclkr.l |
|- L = ( LKer ` U ) |
6 |
|
lclkr.d |
|- D = ( LDual ` U ) |
7 |
|
lclkr.s |
|- S = ( LSubSp ` D ) |
8 |
|
lclkr.c |
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
9 |
|
lclkr.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
ssrab2 |
|- { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } C_ F |
11 |
10
|
a1i |
|- ( ph -> { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } C_ F ) |
12 |
8
|
a1i |
|- ( ph -> C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) |
13 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
14 |
1 2 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
15 |
4 6 13 14
|
ldualvbase |
|- ( ph -> ( Base ` D ) = F ) |
16 |
11 12 15
|
3sstr4d |
|- ( ph -> C C_ ( Base ` D ) ) |
17 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
18 |
|
eqid |
|- ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) ) |
19 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
20 |
17 18 19 4
|
lfl0f |
|- ( U e. LMod -> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. F ) |
21 |
14 20
|
syl |
|- ( ph -> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. F ) |
22 |
1 2 3 19 9
|
dochoc1 |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( Base ` U ) ) ) = ( Base ` U ) ) |
23 |
|
eqid |
|- ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) = ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) |
24 |
17 18 19 4 5
|
lkr0f |
|- ( ( U e. LMod /\ ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. F ) -> ( ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) = ( Base ` U ) <-> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) = ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) |
25 |
14 20 24
|
syl2anc2 |
|- ( ph -> ( ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) = ( Base ` U ) <-> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) = ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) |
26 |
23 25
|
mpbiri |
|- ( ph -> ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) = ( Base ` U ) ) |
27 |
26
|
fveq2d |
|- ( ph -> ( ._|_ ` ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) = ( ._|_ ` ( Base ` U ) ) ) |
28 |
27
|
fveq2d |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) ) = ( ._|_ ` ( ._|_ ` ( Base ` U ) ) ) ) |
29 |
22 28 26
|
3eqtr4d |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) ) = ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) |
30 |
8
|
lcfl1lem |
|- ( ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. C <-> ( ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. F /\ ( ._|_ ` ( ._|_ ` ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) ) = ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) ) |
31 |
21 29 30
|
sylanbrc |
|- ( ph -> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. C ) |
32 |
31
|
ne0d |
|- ( ph -> C =/= (/) ) |
33 |
|
eqid |
|- ( +g ` D ) = ( +g ` D ) |
34 |
9
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> ( K e. HL /\ W e. H ) ) |
35 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
36 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
37 |
|
simpr1 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> x e. ( Base ` ( Scalar ` D ) ) ) |
38 |
|
eqid |
|- ( Scalar ` D ) = ( Scalar ` D ) |
39 |
|
eqid |
|- ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` D ) ) |
40 |
17 35 6 38 39 14
|
ldualsbase |
|- ( ph -> ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` U ) ) ) |
41 |
40
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` U ) ) ) |
42 |
37 41
|
eleqtrd |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> x e. ( Base ` ( Scalar ` U ) ) ) |
43 |
|
simpr2 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> a e. C ) |
44 |
1 3 2 4 5 6 17 35 36 8 34 42 43
|
lclkrlem1 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> ( x ( .s ` D ) a ) e. C ) |
45 |
|
simpr3 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> b e. C ) |
46 |
1 3 2 4 5 6 33 8 34 44 45
|
lclkrlem2 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> ( ( x ( .s ` D ) a ) ( +g ` D ) b ) e. C ) |
47 |
46
|
ralrimivvva |
|- ( ph -> A. x e. ( Base ` ( Scalar ` D ) ) A. a e. C A. b e. C ( ( x ( .s ` D ) a ) ( +g ` D ) b ) e. C ) |
48 |
38 39 13 33 36 7
|
islss |
|- ( C e. S <-> ( C C_ ( Base ` D ) /\ C =/= (/) /\ A. x e. ( Base ` ( Scalar ` D ) ) A. a e. C A. b e. C ( ( x ( .s ` D ) a ) ( +g ` D ) b ) e. C ) ) |
49 |
16 32 47 48
|
syl3anbrc |
|- ( ph -> C e. S ) |