| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lclkrlem2.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | lclkrlem2.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | lclkrlem2.f |  |-  F = ( LFnl ` U ) | 
						
							| 5 |  | lclkrlem2.l |  |-  L = ( LKer ` U ) | 
						
							| 6 |  | lclkrlem2.d |  |-  D = ( LDual ` U ) | 
						
							| 7 |  | lclkrlem2.p |  |-  .+ = ( +g ` D ) | 
						
							| 8 |  | lclkrlem2.c |  |-  C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } | 
						
							| 9 |  | lclkrlem2.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | lclkrlem2.e |  |-  ( ph -> E e. C ) | 
						
							| 11 |  | lclkrlem2.g |  |-  ( ph -> G e. C ) | 
						
							| 12 | 8 | lcfl1lem |  |-  ( E e. C <-> ( E e. F /\ ( ._|_ ` ( ._|_ ` ( L ` E ) ) ) = ( L ` E ) ) ) | 
						
							| 13 | 12 | simplbi |  |-  ( E e. C -> E e. F ) | 
						
							| 14 | 10 13 | syl |  |-  ( ph -> E e. F ) | 
						
							| 15 | 8 | lcfl1lem |  |-  ( G e. C <-> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) | 
						
							| 16 | 15 | simplbi |  |-  ( G e. C -> G e. F ) | 
						
							| 17 | 11 16 | syl |  |-  ( ph -> G e. F ) | 
						
							| 18 | 8 14 | lcfl1 |  |-  ( ph -> ( E e. C <-> ( ._|_ ` ( ._|_ ` ( L ` E ) ) ) = ( L ` E ) ) ) | 
						
							| 19 | 10 18 | mpbid |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` E ) ) ) = ( L ` E ) ) | 
						
							| 20 | 8 17 | lcfl1 |  |-  ( ph -> ( G e. C <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) | 
						
							| 21 | 11 20 | mpbid |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) | 
						
							| 22 | 5 1 2 3 4 6 7 9 14 17 19 21 | lclkrlem2y |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 23 | 1 3 9 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 24 | 4 6 7 23 14 17 | ldualvaddcl |  |-  ( ph -> ( E .+ G ) e. F ) | 
						
							| 25 | 8 24 | lcfl1 |  |-  ( ph -> ( ( E .+ G ) e. C <-> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) ) | 
						
							| 26 | 22 25 | mpbird |  |-  ( ph -> ( E .+ G ) e. C ) |