Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2.h |
|- H = ( LHyp ` K ) |
2 |
|
lclkrlem2.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lclkrlem2.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lclkrlem2.f |
|- F = ( LFnl ` U ) |
5 |
|
lclkrlem2.l |
|- L = ( LKer ` U ) |
6 |
|
lclkrlem2.d |
|- D = ( LDual ` U ) |
7 |
|
lclkrlem2.p |
|- .+ = ( +g ` D ) |
8 |
|
lclkrlem2.c |
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
9 |
|
lclkrlem2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lclkrlem2.e |
|- ( ph -> E e. C ) |
11 |
|
lclkrlem2.g |
|- ( ph -> G e. C ) |
12 |
8
|
lcfl1lem |
|- ( E e. C <-> ( E e. F /\ ( ._|_ ` ( ._|_ ` ( L ` E ) ) ) = ( L ` E ) ) ) |
13 |
12
|
simplbi |
|- ( E e. C -> E e. F ) |
14 |
10 13
|
syl |
|- ( ph -> E e. F ) |
15 |
8
|
lcfl1lem |
|- ( G e. C <-> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) |
16 |
15
|
simplbi |
|- ( G e. C -> G e. F ) |
17 |
11 16
|
syl |
|- ( ph -> G e. F ) |
18 |
8 14
|
lcfl1 |
|- ( ph -> ( E e. C <-> ( ._|_ ` ( ._|_ ` ( L ` E ) ) ) = ( L ` E ) ) ) |
19 |
10 18
|
mpbid |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` E ) ) ) = ( L ` E ) ) |
20 |
8 17
|
lcfl1 |
|- ( ph -> ( G e. C <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) |
21 |
11 20
|
mpbid |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) |
22 |
5 1 2 3 4 6 7 9 14 17 19 21
|
lclkrlem2y |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
23 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
24 |
4 6 7 23 14 17
|
ldualvaddcl |
|- ( ph -> ( E .+ G ) e. F ) |
25 |
8 24
|
lcfl1 |
|- ( ph -> ( ( E .+ G ) e. C <-> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) ) |
26 |
22 25
|
mpbird |
|- ( ph -> ( E .+ G ) e. C ) |