| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lclkrlem2.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lclkrlem2.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | lclkrlem2.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 5 |  | lclkrlem2.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 6 |  | lclkrlem2.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 7 |  | lclkrlem2.p | ⊢  +   =  ( +g ‘ 𝐷 ) | 
						
							| 8 |  | lclkrlem2.c | ⊢ 𝐶  =  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) } | 
						
							| 9 |  | lclkrlem2.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | lclkrlem2.e | ⊢ ( 𝜑  →  𝐸  ∈  𝐶 ) | 
						
							| 11 |  | lclkrlem2.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐶 ) | 
						
							| 12 | 8 | lcfl1lem | ⊢ ( 𝐸  ∈  𝐶  ↔  ( 𝐸  ∈  𝐹  ∧  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) )  =  ( 𝐿 ‘ 𝐸 ) ) ) | 
						
							| 13 | 12 | simplbi | ⊢ ( 𝐸  ∈  𝐶  →  𝐸  ∈  𝐹 ) | 
						
							| 14 | 10 13 | syl | ⊢ ( 𝜑  →  𝐸  ∈  𝐹 ) | 
						
							| 15 | 8 | lcfl1lem | ⊢ ( 𝐺  ∈  𝐶  ↔  ( 𝐺  ∈  𝐹  ∧  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  =  ( 𝐿 ‘ 𝐺 ) ) ) | 
						
							| 16 | 15 | simplbi | ⊢ ( 𝐺  ∈  𝐶  →  𝐺  ∈  𝐹 ) | 
						
							| 17 | 11 16 | syl | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 18 | 8 14 | lcfl1 | ⊢ ( 𝜑  →  ( 𝐸  ∈  𝐶  ↔  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) )  =  ( 𝐿 ‘ 𝐸 ) ) ) | 
						
							| 19 | 10 18 | mpbid | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) )  =  ( 𝐿 ‘ 𝐸 ) ) | 
						
							| 20 | 8 17 | lcfl1 | ⊢ ( 𝜑  →  ( 𝐺  ∈  𝐶  ↔  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  =  ( 𝐿 ‘ 𝐺 ) ) ) | 
						
							| 21 | 11 20 | mpbid | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  =  ( 𝐿 ‘ 𝐺 ) ) | 
						
							| 22 | 5 1 2 3 4 6 7 9 14 17 19 21 | lclkrlem2y | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 23 | 1 3 9 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 24 | 4 6 7 23 14 17 | ldualvaddcl | ⊢ ( 𝜑  →  ( 𝐸  +  𝐺 )  ∈  𝐹 ) | 
						
							| 25 | 8 24 | lcfl1 | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 )  ∈  𝐶  ↔  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) ) | 
						
							| 26 | 22 25 | mpbird | ⊢ ( 𝜑  →  ( 𝐸  +  𝐺 )  ∈  𝐶 ) |