Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lclkrlem2.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lclkrlem2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lclkrlem2.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
5 |
|
lclkrlem2.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
6 |
|
lclkrlem2.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
7 |
|
lclkrlem2.p |
⊢ + = ( +g ‘ 𝐷 ) |
8 |
|
lclkrlem2.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
9 |
|
lclkrlem2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lclkrlem2.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐶 ) |
11 |
|
lclkrlem2.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐶 ) |
12 |
8
|
lcfl1lem |
⊢ ( 𝐸 ∈ 𝐶 ↔ ( 𝐸 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ) = ( 𝐿 ‘ 𝐸 ) ) ) |
13 |
12
|
simplbi |
⊢ ( 𝐸 ∈ 𝐶 → 𝐸 ∈ 𝐹 ) |
14 |
10 13
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
15 |
8
|
lcfl1lem |
⊢ ( 𝐺 ∈ 𝐶 ↔ ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
16 |
15
|
simplbi |
⊢ ( 𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐹 ) |
17 |
11 16
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
18 |
8 14
|
lcfl1 |
⊢ ( 𝜑 → ( 𝐸 ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ) = ( 𝐿 ‘ 𝐸 ) ) ) |
19 |
10 18
|
mpbid |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ) = ( 𝐿 ‘ 𝐸 ) ) |
20 |
8 17
|
lcfl1 |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
21 |
11 20
|
mpbid |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
22 |
5 1 2 3 4 6 7 9 14 17 19 21
|
lclkrlem2y |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
23 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
24 |
4 6 7 23 14 17
|
ldualvaddcl |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐹 ) |
25 |
8 24
|
lcfl1 |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
26 |
22 25
|
mpbird |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐶 ) |