Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2y.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
2 |
|
lclkrlem2y.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
lclkrlem2y.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lclkrlem2y.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
lclkrlem2y.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
lclkrlem2y.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
7 |
|
lclkrlem2y.p |
⊢ + = ( +g ‘ 𝐷 ) |
8 |
|
lclkrlem2y.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
lclkrlem2y.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
10 |
|
lclkrlem2y.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
11 |
|
lclkrlem2y.le |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ) = ( 𝐿 ‘ 𝐸 ) ) |
12 |
|
lclkrlem2y.lg |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
14 |
2 3 4 13 5 1 8 10
|
lcfl8a |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) ) ) |
15 |
12 14
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) ) |
16 |
2 3 4 13 5 1 8 9
|
lcfl8a |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ) = ( 𝐿 ‘ 𝐸 ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝑈 ) ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑥 } ) ) ) |
17 |
11 16
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝑈 ) ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑥 } ) ) |
18 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑥 } ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
19 |
|
simp21 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑥 } ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) ) → 𝑥 ∈ ( Base ‘ 𝑈 ) ) |
20 |
|
simp23 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑥 } ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) ) → 𝑦 ∈ ( Base ‘ 𝑈 ) ) |
21 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑥 } ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) ) → 𝐸 ∈ 𝐹 ) |
22 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑥 } ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) ) → 𝐺 ∈ 𝐹 ) |
23 |
|
simp22 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑥 } ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) ) → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑥 } ) ) |
24 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑥 } ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) ) |
25 |
1 2 3 4 13 5 6 7 18 19 20 21 22 23 24
|
lclkrlem2x |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑥 } ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
26 |
25
|
3exp |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑥 } ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) → ( ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) ) |
27 |
26
|
3expd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑈 ) → ( ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑥 } ) → ( 𝑦 ∈ ( Base ‘ 𝑈 ) → ( ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) ) ) ) |
28 |
27
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( Base ‘ 𝑈 ) ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑥 } ) → ( 𝑦 ∈ ( Base ‘ 𝑈 ) → ( ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) ) ) |
29 |
17 28
|
mpd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( Base ‘ 𝑈 ) → ( ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) ) |
30 |
29
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑦 } ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
31 |
15 30
|
mpd |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |