| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2y.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 2 |  | lclkrlem2y.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 3 |  | lclkrlem2y.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | lclkrlem2y.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | lclkrlem2y.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 6 |  | lclkrlem2y.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 7 |  | lclkrlem2y.p | ⊢  +   =  ( +g ‘ 𝐷 ) | 
						
							| 8 |  | lclkrlem2y.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | lclkrlem2y.e | ⊢ ( 𝜑  →  𝐸  ∈  𝐹 ) | 
						
							| 10 |  | lclkrlem2y.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 11 |  | lclkrlem2y.le | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) )  =  ( 𝐿 ‘ 𝐸 ) ) | 
						
							| 12 |  | lclkrlem2y.lg | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  =  ( 𝐿 ‘ 𝐺 ) ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 14 | 2 3 4 13 5 1 8 10 | lcfl8a | ⊢ ( 𝜑  →  ( (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  =  ( 𝐿 ‘ 𝐺 )  ↔  ∃ 𝑦  ∈  ( Base ‘ 𝑈 ) ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } ) ) ) | 
						
							| 15 | 12 14 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ( Base ‘ 𝑈 ) ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } ) ) | 
						
							| 16 | 2 3 4 13 5 1 8 9 | lcfl8a | ⊢ ( 𝜑  →  ( (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) )  =  ( 𝐿 ‘ 𝐸 )  ↔  ∃ 𝑥  ∈  ( Base ‘ 𝑈 ) ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑥 } ) ) ) | 
						
							| 17 | 11 16 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( Base ‘ 𝑈 ) ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑥 } ) ) | 
						
							| 18 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑈 )  ∧  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑥 } )  ∧  𝑦  ∈  ( Base ‘ 𝑈 ) )  ∧  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 19 |  | simp21 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑈 )  ∧  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑥 } )  ∧  𝑦  ∈  ( Base ‘ 𝑈 ) )  ∧  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } ) )  →  𝑥  ∈  ( Base ‘ 𝑈 ) ) | 
						
							| 20 |  | simp23 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑈 )  ∧  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑥 } )  ∧  𝑦  ∈  ( Base ‘ 𝑈 ) )  ∧  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } ) )  →  𝑦  ∈  ( Base ‘ 𝑈 ) ) | 
						
							| 21 | 9 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑈 )  ∧  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑥 } )  ∧  𝑦  ∈  ( Base ‘ 𝑈 ) )  ∧  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } ) )  →  𝐸  ∈  𝐹 ) | 
						
							| 22 | 10 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑈 )  ∧  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑥 } )  ∧  𝑦  ∈  ( Base ‘ 𝑈 ) )  ∧  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } ) )  →  𝐺  ∈  𝐹 ) | 
						
							| 23 |  | simp22 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑈 )  ∧  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑥 } )  ∧  𝑦  ∈  ( Base ‘ 𝑈 ) )  ∧  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } ) )  →  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑥 } ) ) | 
						
							| 24 |  | simp3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑈 )  ∧  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑥 } )  ∧  𝑦  ∈  ( Base ‘ 𝑈 ) )  ∧  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } ) )  →  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } ) ) | 
						
							| 25 | 1 2 3 4 13 5 6 7 18 19 20 21 22 23 24 | lclkrlem2x | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑈 )  ∧  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑥 } )  ∧  𝑦  ∈  ( Base ‘ 𝑈 ) )  ∧  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } ) )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 26 | 25 | 3exp | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( Base ‘ 𝑈 )  ∧  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑥 } )  ∧  𝑦  ∈  ( Base ‘ 𝑈 ) )  →  ( ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) ) ) | 
						
							| 27 | 26 | 3expd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝑈 )  →  ( ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑥 } )  →  ( 𝑦  ∈  ( Base ‘ 𝑈 )  →  ( ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) ) ) ) ) | 
						
							| 28 | 27 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( Base ‘ 𝑈 ) ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑥 } )  →  ( 𝑦  ∈  ( Base ‘ 𝑈 )  →  ( ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) ) ) ) | 
						
							| 29 | 17 28 | mpd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( Base ‘ 𝑈 )  →  ( ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) ) ) | 
						
							| 30 | 29 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ( Base ‘ 𝑈 ) ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑦 } )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) ) | 
						
							| 31 | 15 30 | mpd | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) |