| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkr.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lclkr.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lclkr.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lclkr.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 5 |
|
lclkr.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 6 |
|
lclkr.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
| 7 |
|
lclkr.s |
⊢ 𝑆 = ( LSubSp ‘ 𝐷 ) |
| 8 |
|
lclkr.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
| 9 |
|
lclkr.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
ssrab2 |
⊢ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ⊆ 𝐹 |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ⊆ 𝐹 ) |
| 12 |
8
|
a1i |
⊢ ( 𝜑 → 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 14 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 15 |
4 6 13 14
|
ldualvbase |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = 𝐹 ) |
| 16 |
11 12 15
|
3sstr4d |
⊢ ( 𝜑 → 𝐶 ⊆ ( Base ‘ 𝐷 ) ) |
| 17 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
| 18 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 20 |
17 18 19 4
|
lfl0f |
⊢ ( 𝑈 ∈ LMod → ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐹 ) |
| 21 |
14 20
|
syl |
⊢ ( 𝜑 → ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐹 ) |
| 22 |
1 2 3 19 9
|
dochoc1 |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) = ( Base ‘ 𝑈 ) ) |
| 23 |
|
eqid |
⊢ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) |
| 24 |
17 18 19 4 5
|
lkr0f |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐹 ) → ( ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) = ( Base ‘ 𝑈 ) ↔ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) |
| 25 |
14 20 24
|
syl2anc2 |
⊢ ( 𝜑 → ( ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) = ( Base ‘ 𝑈 ) ↔ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) |
| 26 |
23 25
|
mpbiri |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) = ( Base ‘ 𝑈 ) ) |
| 27 |
26
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) = ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) |
| 28 |
27
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) ) |
| 29 |
22 28 26
|
3eqtr4d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) ) = ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) |
| 30 |
8
|
lcfl1lem |
⊢ ( ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐶 ↔ ( ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) ) = ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) ) |
| 31 |
21 29 30
|
sylanbrc |
⊢ ( 𝜑 → ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐶 ) |
| 32 |
31
|
ne0d |
⊢ ( 𝜑 → 𝐶 ≠ ∅ ) |
| 33 |
|
eqid |
⊢ ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) |
| 34 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 35 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
| 36 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐷 ) = ( ·𝑠 ‘ 𝐷 ) |
| 37 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ) |
| 38 |
|
eqid |
⊢ ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 ) |
| 39 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝐷 ) ) |
| 40 |
17 35 6 38 39 14
|
ldualsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 42 |
37 41
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 43 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑎 ∈ 𝐶 ) |
| 44 |
1 3 2 4 5 6 17 35 36 8 34 42 43
|
lclkrlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐷 ) 𝑎 ) ∈ 𝐶 ) |
| 45 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑏 ∈ 𝐶 ) |
| 46 |
1 3 2 4 5 6 33 8 34 44 45
|
lclkrlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐷 ) 𝑎 ) ( +g ‘ 𝐷 ) 𝑏 ) ∈ 𝐶 ) |
| 47 |
46
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∀ 𝑎 ∈ 𝐶 ∀ 𝑏 ∈ 𝐶 ( ( 𝑥 ( ·𝑠 ‘ 𝐷 ) 𝑎 ) ( +g ‘ 𝐷 ) 𝑏 ) ∈ 𝐶 ) |
| 48 |
38 39 13 33 36 7
|
islss |
⊢ ( 𝐶 ∈ 𝑆 ↔ ( 𝐶 ⊆ ( Base ‘ 𝐷 ) ∧ 𝐶 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∀ 𝑎 ∈ 𝐶 ∀ 𝑏 ∈ 𝐶 ( ( 𝑥 ( ·𝑠 ‘ 𝐷 ) 𝑎 ) ( +g ‘ 𝐷 ) 𝑏 ) ∈ 𝐶 ) ) |
| 49 |
16 32 47 48
|
syl3anbrc |
⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |