Metamath Proof Explorer


Theorem lclkr

Description: The set of functionals with closed kernels is a subspace. Part of proof of Theorem 3.6 of Holland95 p. 218, line 20, stating "The f_M that arise this way generate a subspace F of E'". Our proof was suggested by Mario Carneiro, 5-Jan-2015. (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkr.h 𝐻 = ( LHyp ‘ 𝐾 )
lclkr.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lclkr.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lclkr.f 𝐹 = ( LFnl ‘ 𝑈 )
lclkr.l 𝐿 = ( LKer ‘ 𝑈 )
lclkr.d 𝐷 = ( LDual ‘ 𝑈 )
lclkr.s 𝑆 = ( LSubSp ‘ 𝐷 )
lclkr.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lclkr.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion lclkr ( 𝜑𝐶𝑆 )

Proof

Step Hyp Ref Expression
1 lclkr.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lclkr.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 lclkr.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
4 lclkr.f 𝐹 = ( LFnl ‘ 𝑈 )
5 lclkr.l 𝐿 = ( LKer ‘ 𝑈 )
6 lclkr.d 𝐷 = ( LDual ‘ 𝑈 )
7 lclkr.s 𝑆 = ( LSubSp ‘ 𝐷 )
8 lclkr.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
9 lclkr.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 ssrab2 { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } ⊆ 𝐹
11 10 a1i ( 𝜑 → { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } ⊆ 𝐹 )
12 8 a1i ( 𝜑𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } )
13 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
14 1 2 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
15 4 6 13 14 ldualvbase ( 𝜑 → ( Base ‘ 𝐷 ) = 𝐹 )
16 11 12 15 3sstr4d ( 𝜑𝐶 ⊆ ( Base ‘ 𝐷 ) )
17 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
18 eqid ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) )
19 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
20 17 18 19 4 lfl0f ( 𝑈 ∈ LMod → ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐹 )
21 14 20 syl ( 𝜑 → ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐹 )
22 1 2 3 19 9 dochoc1 ( 𝜑 → ( ‘ ( ‘ ( Base ‘ 𝑈 ) ) ) = ( Base ‘ 𝑈 ) )
23 eqid ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )
24 17 18 19 4 5 lkr0f ( ( 𝑈 ∈ LMod ∧ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐹 ) → ( ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) = ( Base ‘ 𝑈 ) ↔ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) )
25 14 20 24 syl2anc2 ( 𝜑 → ( ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) = ( Base ‘ 𝑈 ) ↔ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) )
26 23 25 mpbiri ( 𝜑 → ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) = ( Base ‘ 𝑈 ) )
27 26 fveq2d ( 𝜑 → ( ‘ ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) = ( ‘ ( Base ‘ 𝑈 ) ) )
28 27 fveq2d ( 𝜑 → ( ‘ ( ‘ ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) ) = ( ‘ ( ‘ ( Base ‘ 𝑈 ) ) ) )
29 22 28 26 3eqtr4d ( 𝜑 → ( ‘ ( ‘ ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) ) = ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) )
30 8 lcfl1lem ( ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐶 ↔ ( ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐹 ∧ ( ‘ ( ‘ ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) ) = ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) )
31 21 29 30 sylanbrc ( 𝜑 → ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐶 )
32 31 ne0d ( 𝜑𝐶 ≠ ∅ )
33 eqid ( +g𝐷 ) = ( +g𝐷 )
34 9 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎𝐶𝑏𝐶 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
35 eqid ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) )
36 eqid ( ·𝑠𝐷 ) = ( ·𝑠𝐷 )
37 simpr1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎𝐶𝑏𝐶 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) )
38 eqid ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 )
39 eqid ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝐷 ) )
40 17 35 6 38 39 14 ldualsbase ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) )
41 40 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎𝐶𝑏𝐶 ) ) → ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) )
42 37 41 eleqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎𝐶𝑏𝐶 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) )
43 simpr2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎𝐶𝑏𝐶 ) ) → 𝑎𝐶 )
44 1 3 2 4 5 6 17 35 36 8 34 42 43 lclkrlem1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎𝐶𝑏𝐶 ) ) → ( 𝑥 ( ·𝑠𝐷 ) 𝑎 ) ∈ 𝐶 )
45 simpr3 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎𝐶𝑏𝐶 ) ) → 𝑏𝐶 )
46 1 3 2 4 5 6 33 8 34 44 45 lclkrlem2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎𝐶𝑏𝐶 ) ) → ( ( 𝑥 ( ·𝑠𝐷 ) 𝑎 ) ( +g𝐷 ) 𝑏 ) ∈ 𝐶 )
47 46 ralrimivvva ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∀ 𝑎𝐶𝑏𝐶 ( ( 𝑥 ( ·𝑠𝐷 ) 𝑎 ) ( +g𝐷 ) 𝑏 ) ∈ 𝐶 )
48 38 39 13 33 36 7 islss ( 𝐶𝑆 ↔ ( 𝐶 ⊆ ( Base ‘ 𝐷 ) ∧ 𝐶 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∀ 𝑎𝐶𝑏𝐶 ( ( 𝑥 ( ·𝑠𝐷 ) 𝑎 ) ( +g𝐷 ) 𝑏 ) ∈ 𝐶 ) )
49 16 32 47 48 syl3anbrc ( 𝜑𝐶𝑆 )