| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lclkrlem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lclkrlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lclkrlem1.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 5 |
|
lclkrlem1.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 6 |
|
lclkrlem1.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
| 7 |
|
lclkrlem1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 8 |
|
lclkrlem1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 9 |
|
lclkrlem1.t |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
| 10 |
|
lclkrlem1.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
| 11 |
|
lclkrlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 12 |
|
lclkrlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 13 |
|
lclkrlem1.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐶 ) |
| 14 |
1 3 11
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 15 |
10
|
lcfl1lem |
⊢ ( 𝐺 ∈ 𝐶 ↔ ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
| 16 |
13 15
|
sylib |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
| 17 |
16
|
simpld |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 18 |
4 7 8 6 9 14 12 17
|
ldualvscl |
⊢ ( 𝜑 → ( 𝑋 · 𝐺 ) ∈ 𝐹 ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 20 |
1 3 2 19 11
|
dochoc1 |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) = ( Base ‘ 𝑈 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) = ( Base ‘ 𝑈 ) ) |
| 22 |
|
fvoveq1 |
⊢ ( 𝑋 = ( 0g ‘ 𝑅 ) → ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) = ( 𝐿 ‘ ( ( 0g ‘ 𝑅 ) · 𝐺 ) ) ) |
| 23 |
6 14
|
lduallmod |
⊢ ( 𝜑 → 𝐷 ∈ LMod ) |
| 24 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 25 |
4 6 24 14 17
|
ldualelvbase |
⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ 𝐷 ) ) |
| 26 |
|
eqid |
⊢ ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 ) |
| 27 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐷 ) ) = ( 0g ‘ ( Scalar ‘ 𝐷 ) ) |
| 28 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
| 29 |
24 26 9 27 28
|
lmod0vs |
⊢ ( ( 𝐷 ∈ LMod ∧ 𝐺 ∈ ( Base ‘ 𝐷 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝐷 ) ) · 𝐺 ) = ( 0g ‘ 𝐷 ) ) |
| 30 |
23 25 29
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝐷 ) ) · 𝐺 ) = ( 0g ‘ 𝐷 ) ) |
| 31 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 32 |
7 31 6 26 27 14
|
ldual0 |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐷 ) ) = ( 0g ‘ 𝑅 ) ) |
| 33 |
32
|
oveq1d |
⊢ ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝐷 ) ) · 𝐺 ) = ( ( 0g ‘ 𝑅 ) · 𝐺 ) ) |
| 34 |
19 7 31 6 28 14
|
ldual0v |
⊢ ( 𝜑 → ( 0g ‘ 𝐷 ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) |
| 35 |
30 33 34
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) · 𝐺 ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) |
| 36 |
35
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( 0g ‘ 𝑅 ) · 𝐺 ) ) = ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) ) |
| 37 |
|
eqid |
⊢ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) |
| 38 |
7 31 19 4
|
lfl0f |
⊢ ( 𝑈 ∈ LMod → ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ∈ 𝐹 ) |
| 39 |
7 31 19 4 5
|
lkr0f |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ∈ 𝐹 ) → ( ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) = ( Base ‘ 𝑈 ) ↔ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) ) |
| 40 |
14 38 39
|
syl2anc2 |
⊢ ( 𝜑 → ( ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) = ( Base ‘ 𝑈 ) ↔ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) ) |
| 41 |
37 40
|
mpbiri |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) = ( Base ‘ 𝑈 ) ) |
| 42 |
36 41
|
eqtrd |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( 0g ‘ 𝑅 ) · 𝐺 ) ) = ( Base ‘ 𝑈 ) ) |
| 43 |
22 42
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) = ( Base ‘ 𝑈 ) ) |
| 44 |
43
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) = ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) |
| 45 |
44
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) ) |
| 46 |
21 45 43
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) |
| 47 |
16
|
simprd |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
| 49 |
1 3 11
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝑈 ∈ LVec ) |
| 51 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝐺 ∈ 𝐹 ) |
| 52 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝑋 ∈ 𝐵 ) |
| 53 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝑋 ≠ ( 0g ‘ 𝑅 ) ) |
| 54 |
7 8 31 4 5 6 9 50 51 52 53
|
ldualkrsc |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) = ( 𝐿 ‘ 𝐺 ) ) |
| 55 |
54
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) = ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) |
| 56 |
55
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) |
| 57 |
48 56 54
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) |
| 58 |
46 57
|
pm2.61dane |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) |
| 59 |
10
|
lcfl1lem |
⊢ ( ( 𝑋 · 𝐺 ) ∈ 𝐶 ↔ ( ( 𝑋 · 𝐺 ) ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) |
| 60 |
18 58 59
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑋 · 𝐺 ) ∈ 𝐶 ) |