Metamath Proof Explorer


Theorem lclkrlem1

Description: The set of functionals having closed kernels is closed under scalar product. (Contributed by NM, 28-Dec-2014)

Ref Expression
Hypotheses lclkrlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
lclkrlem1.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem1.f 𝐹 = ( LFnl ‘ 𝑈 )
lclkrlem1.l 𝐿 = ( LKer ‘ 𝑈 )
lclkrlem1.d 𝐷 = ( LDual ‘ 𝑈 )
lclkrlem1.r 𝑅 = ( Scalar ‘ 𝑈 )
lclkrlem1.b 𝐵 = ( Base ‘ 𝑅 )
lclkrlem1.t · = ( ·𝑠𝐷 )
lclkrlem1.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lclkrlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lclkrlem1.x ( 𝜑𝑋𝐵 )
lclkrlem1.g ( 𝜑𝐺𝐶 )
Assertion lclkrlem1 ( 𝜑 → ( 𝑋 · 𝐺 ) ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 lclkrlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lclkrlem1.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lclkrlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lclkrlem1.f 𝐹 = ( LFnl ‘ 𝑈 )
5 lclkrlem1.l 𝐿 = ( LKer ‘ 𝑈 )
6 lclkrlem1.d 𝐷 = ( LDual ‘ 𝑈 )
7 lclkrlem1.r 𝑅 = ( Scalar ‘ 𝑈 )
8 lclkrlem1.b 𝐵 = ( Base ‘ 𝑅 )
9 lclkrlem1.t · = ( ·𝑠𝐷 )
10 lclkrlem1.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
11 lclkrlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 lclkrlem1.x ( 𝜑𝑋𝐵 )
13 lclkrlem1.g ( 𝜑𝐺𝐶 )
14 1 3 11 dvhlmod ( 𝜑𝑈 ∈ LMod )
15 10 lcfl1lem ( 𝐺𝐶 ↔ ( 𝐺𝐹 ∧ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ) )
16 13 15 sylib ( 𝜑 → ( 𝐺𝐹 ∧ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ) )
17 16 simpld ( 𝜑𝐺𝐹 )
18 4 7 8 6 9 14 12 17 ldualvscl ( 𝜑 → ( 𝑋 · 𝐺 ) ∈ 𝐹 )
19 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
20 1 3 2 19 11 dochoc1 ( 𝜑 → ( ‘ ( ‘ ( Base ‘ 𝑈 ) ) ) = ( Base ‘ 𝑈 ) )
21 20 adantr ( ( 𝜑𝑋 = ( 0g𝑅 ) ) → ( ‘ ( ‘ ( Base ‘ 𝑈 ) ) ) = ( Base ‘ 𝑈 ) )
22 fvoveq1 ( 𝑋 = ( 0g𝑅 ) → ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) = ( 𝐿 ‘ ( ( 0g𝑅 ) · 𝐺 ) ) )
23 6 14 lduallmod ( 𝜑𝐷 ∈ LMod )
24 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
25 4 6 24 14 17 ldualelvbase ( 𝜑𝐺 ∈ ( Base ‘ 𝐷 ) )
26 eqid ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 )
27 eqid ( 0g ‘ ( Scalar ‘ 𝐷 ) ) = ( 0g ‘ ( Scalar ‘ 𝐷 ) )
28 eqid ( 0g𝐷 ) = ( 0g𝐷 )
29 24 26 9 27 28 lmod0vs ( ( 𝐷 ∈ LMod ∧ 𝐺 ∈ ( Base ‘ 𝐷 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝐷 ) ) · 𝐺 ) = ( 0g𝐷 ) )
30 23 25 29 syl2anc ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝐷 ) ) · 𝐺 ) = ( 0g𝐷 ) )
31 eqid ( 0g𝑅 ) = ( 0g𝑅 )
32 7 31 6 26 27 14 ldual0 ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐷 ) ) = ( 0g𝑅 ) )
33 32 oveq1d ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝐷 ) ) · 𝐺 ) = ( ( 0g𝑅 ) · 𝐺 ) )
34 19 7 31 6 28 14 ldual0v ( 𝜑 → ( 0g𝐷 ) = ( ( Base ‘ 𝑈 ) × { ( 0g𝑅 ) } ) )
35 30 33 34 3eqtr3d ( 𝜑 → ( ( 0g𝑅 ) · 𝐺 ) = ( ( Base ‘ 𝑈 ) × { ( 0g𝑅 ) } ) )
36 35 fveq2d ( 𝜑 → ( 𝐿 ‘ ( ( 0g𝑅 ) · 𝐺 ) ) = ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g𝑅 ) } ) ) )
37 eqid ( ( Base ‘ 𝑈 ) × { ( 0g𝑅 ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g𝑅 ) } )
38 7 31 19 4 lfl0f ( 𝑈 ∈ LMod → ( ( Base ‘ 𝑈 ) × { ( 0g𝑅 ) } ) ∈ 𝐹 )
39 7 31 19 4 5 lkr0f ( ( 𝑈 ∈ LMod ∧ ( ( Base ‘ 𝑈 ) × { ( 0g𝑅 ) } ) ∈ 𝐹 ) → ( ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g𝑅 ) } ) ) = ( Base ‘ 𝑈 ) ↔ ( ( Base ‘ 𝑈 ) × { ( 0g𝑅 ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g𝑅 ) } ) ) )
40 14 38 39 syl2anc2 ( 𝜑 → ( ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g𝑅 ) } ) ) = ( Base ‘ 𝑈 ) ↔ ( ( Base ‘ 𝑈 ) × { ( 0g𝑅 ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g𝑅 ) } ) ) )
41 37 40 mpbiri ( 𝜑 → ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g𝑅 ) } ) ) = ( Base ‘ 𝑈 ) )
42 36 41 eqtrd ( 𝜑 → ( 𝐿 ‘ ( ( 0g𝑅 ) · 𝐺 ) ) = ( Base ‘ 𝑈 ) )
43 22 42 sylan9eqr ( ( 𝜑𝑋 = ( 0g𝑅 ) ) → ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) = ( Base ‘ 𝑈 ) )
44 43 fveq2d ( ( 𝜑𝑋 = ( 0g𝑅 ) ) → ( ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) = ( ‘ ( Base ‘ 𝑈 ) ) )
45 44 fveq2d ( ( 𝜑𝑋 = ( 0g𝑅 ) ) → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( ‘ ( ‘ ( Base ‘ 𝑈 ) ) ) )
46 21 45 43 3eqtr4d ( ( 𝜑𝑋 = ( 0g𝑅 ) ) → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) )
47 16 simprd ( 𝜑 → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) )
48 47 adantr ( ( 𝜑𝑋 ≠ ( 0g𝑅 ) ) → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) )
49 1 3 11 dvhlvec ( 𝜑𝑈 ∈ LVec )
50 49 adantr ( ( 𝜑𝑋 ≠ ( 0g𝑅 ) ) → 𝑈 ∈ LVec )
51 17 adantr ( ( 𝜑𝑋 ≠ ( 0g𝑅 ) ) → 𝐺𝐹 )
52 12 adantr ( ( 𝜑𝑋 ≠ ( 0g𝑅 ) ) → 𝑋𝐵 )
53 simpr ( ( 𝜑𝑋 ≠ ( 0g𝑅 ) ) → 𝑋 ≠ ( 0g𝑅 ) )
54 7 8 31 4 5 6 9 50 51 52 53 ldualkrsc ( ( 𝜑𝑋 ≠ ( 0g𝑅 ) ) → ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) = ( 𝐿𝐺 ) )
55 54 fveq2d ( ( 𝜑𝑋 ≠ ( 0g𝑅 ) ) → ( ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) = ( ‘ ( 𝐿𝐺 ) ) )
56 55 fveq2d ( ( 𝜑𝑋 ≠ ( 0g𝑅 ) ) → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) )
57 48 56 54 3eqtr4d ( ( 𝜑𝑋 ≠ ( 0g𝑅 ) ) → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) )
58 46 57 pm2.61dane ( 𝜑 → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) )
59 10 lcfl1lem ( ( 𝑋 · 𝐺 ) ∈ 𝐶 ↔ ( ( 𝑋 · 𝐺 ) ∈ 𝐹 ∧ ( ‘ ( ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) )
60 18 58 59 sylanbrc ( 𝜑 → ( 𝑋 · 𝐺 ) ∈ 𝐶 )