Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lclkrlem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lclkrlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lclkrlem1.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
5 |
|
lclkrlem1.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
6 |
|
lclkrlem1.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
7 |
|
lclkrlem1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
8 |
|
lclkrlem1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
9 |
|
lclkrlem1.t |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
10 |
|
lclkrlem1.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
11 |
|
lclkrlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
lclkrlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
13 |
|
lclkrlem1.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐶 ) |
14 |
1 3 11
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
15 |
10
|
lcfl1lem |
⊢ ( 𝐺 ∈ 𝐶 ↔ ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
16 |
13 15
|
sylib |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
17 |
16
|
simpld |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
18 |
4 7 8 6 9 14 12 17
|
ldualvscl |
⊢ ( 𝜑 → ( 𝑋 · 𝐺 ) ∈ 𝐹 ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
20 |
1 3 2 19 11
|
dochoc1 |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) = ( Base ‘ 𝑈 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) = ( Base ‘ 𝑈 ) ) |
22 |
|
fvoveq1 |
⊢ ( 𝑋 = ( 0g ‘ 𝑅 ) → ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) = ( 𝐿 ‘ ( ( 0g ‘ 𝑅 ) · 𝐺 ) ) ) |
23 |
6 14
|
lduallmod |
⊢ ( 𝜑 → 𝐷 ∈ LMod ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
25 |
4 6 24 14 17
|
ldualelvbase |
⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ 𝐷 ) ) |
26 |
|
eqid |
⊢ ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 ) |
27 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐷 ) ) = ( 0g ‘ ( Scalar ‘ 𝐷 ) ) |
28 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
29 |
24 26 9 27 28
|
lmod0vs |
⊢ ( ( 𝐷 ∈ LMod ∧ 𝐺 ∈ ( Base ‘ 𝐷 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝐷 ) ) · 𝐺 ) = ( 0g ‘ 𝐷 ) ) |
30 |
23 25 29
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝐷 ) ) · 𝐺 ) = ( 0g ‘ 𝐷 ) ) |
31 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
32 |
7 31 6 26 27 14
|
ldual0 |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐷 ) ) = ( 0g ‘ 𝑅 ) ) |
33 |
32
|
oveq1d |
⊢ ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝐷 ) ) · 𝐺 ) = ( ( 0g ‘ 𝑅 ) · 𝐺 ) ) |
34 |
19 7 31 6 28 14
|
ldual0v |
⊢ ( 𝜑 → ( 0g ‘ 𝐷 ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) |
35 |
30 33 34
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) · 𝐺 ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) |
36 |
35
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( 0g ‘ 𝑅 ) · 𝐺 ) ) = ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) ) |
37 |
|
eqid |
⊢ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) |
38 |
7 31 19 4
|
lfl0f |
⊢ ( 𝑈 ∈ LMod → ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ∈ 𝐹 ) |
39 |
7 31 19 4 5
|
lkr0f |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ∈ 𝐹 ) → ( ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) = ( Base ‘ 𝑈 ) ↔ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) ) |
40 |
14 38 39
|
syl2anc2 |
⊢ ( 𝜑 → ( ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) = ( Base ‘ 𝑈 ) ↔ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) ) |
41 |
37 40
|
mpbiri |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ 𝑅 ) } ) ) = ( Base ‘ 𝑈 ) ) |
42 |
36 41
|
eqtrd |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( 0g ‘ 𝑅 ) · 𝐺 ) ) = ( Base ‘ 𝑈 ) ) |
43 |
22 42
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) = ( Base ‘ 𝑈 ) ) |
44 |
43
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) = ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) |
45 |
44
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) ) |
46 |
21 45 43
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) |
47 |
16
|
simprd |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
49 |
1 3 11
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝑈 ∈ LVec ) |
51 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝐺 ∈ 𝐹 ) |
52 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝑋 ∈ 𝐵 ) |
53 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝑋 ≠ ( 0g ‘ 𝑅 ) ) |
54 |
7 8 31 4 5 6 9 50 51 52 53
|
ldualkrsc |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) = ( 𝐿 ‘ 𝐺 ) ) |
55 |
54
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) = ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) |
56 |
55
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) |
57 |
48 56 54
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) |
58 |
46 57
|
pm2.61dane |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) |
59 |
10
|
lcfl1lem |
⊢ ( ( 𝑋 · 𝐺 ) ∈ 𝐶 ↔ ( ( 𝑋 · 𝐺 ) ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) ) ) |
60 |
18 58 59
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑋 · 𝐺 ) ∈ 𝐶 ) |