Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
lclkrlem1.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lclkrlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lclkrlem1.f |
|- F = ( LFnl ` U ) |
5 |
|
lclkrlem1.l |
|- L = ( LKer ` U ) |
6 |
|
lclkrlem1.d |
|- D = ( LDual ` U ) |
7 |
|
lclkrlem1.r |
|- R = ( Scalar ` U ) |
8 |
|
lclkrlem1.b |
|- B = ( Base ` R ) |
9 |
|
lclkrlem1.t |
|- .x. = ( .s ` D ) |
10 |
|
lclkrlem1.c |
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
11 |
|
lclkrlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
lclkrlem1.x |
|- ( ph -> X e. B ) |
13 |
|
lclkrlem1.g |
|- ( ph -> G e. C ) |
14 |
1 3 11
|
dvhlmod |
|- ( ph -> U e. LMod ) |
15 |
10
|
lcfl1lem |
|- ( G e. C <-> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) |
16 |
13 15
|
sylib |
|- ( ph -> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) |
17 |
16
|
simpld |
|- ( ph -> G e. F ) |
18 |
4 7 8 6 9 14 12 17
|
ldualvscl |
|- ( ph -> ( X .x. G ) e. F ) |
19 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
20 |
1 3 2 19 11
|
dochoc1 |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( Base ` U ) ) ) = ( Base ` U ) ) |
21 |
20
|
adantr |
|- ( ( ph /\ X = ( 0g ` R ) ) -> ( ._|_ ` ( ._|_ ` ( Base ` U ) ) ) = ( Base ` U ) ) |
22 |
|
fvoveq1 |
|- ( X = ( 0g ` R ) -> ( L ` ( X .x. G ) ) = ( L ` ( ( 0g ` R ) .x. G ) ) ) |
23 |
6 14
|
lduallmod |
|- ( ph -> D e. LMod ) |
24 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
25 |
4 6 24 14 17
|
ldualelvbase |
|- ( ph -> G e. ( Base ` D ) ) |
26 |
|
eqid |
|- ( Scalar ` D ) = ( Scalar ` D ) |
27 |
|
eqid |
|- ( 0g ` ( Scalar ` D ) ) = ( 0g ` ( Scalar ` D ) ) |
28 |
|
eqid |
|- ( 0g ` D ) = ( 0g ` D ) |
29 |
24 26 9 27 28
|
lmod0vs |
|- ( ( D e. LMod /\ G e. ( Base ` D ) ) -> ( ( 0g ` ( Scalar ` D ) ) .x. G ) = ( 0g ` D ) ) |
30 |
23 25 29
|
syl2anc |
|- ( ph -> ( ( 0g ` ( Scalar ` D ) ) .x. G ) = ( 0g ` D ) ) |
31 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
32 |
7 31 6 26 27 14
|
ldual0 |
|- ( ph -> ( 0g ` ( Scalar ` D ) ) = ( 0g ` R ) ) |
33 |
32
|
oveq1d |
|- ( ph -> ( ( 0g ` ( Scalar ` D ) ) .x. G ) = ( ( 0g ` R ) .x. G ) ) |
34 |
19 7 31 6 28 14
|
ldual0v |
|- ( ph -> ( 0g ` D ) = ( ( Base ` U ) X. { ( 0g ` R ) } ) ) |
35 |
30 33 34
|
3eqtr3d |
|- ( ph -> ( ( 0g ` R ) .x. G ) = ( ( Base ` U ) X. { ( 0g ` R ) } ) ) |
36 |
35
|
fveq2d |
|- ( ph -> ( L ` ( ( 0g ` R ) .x. G ) ) = ( L ` ( ( Base ` U ) X. { ( 0g ` R ) } ) ) ) |
37 |
|
eqid |
|- ( ( Base ` U ) X. { ( 0g ` R ) } ) = ( ( Base ` U ) X. { ( 0g ` R ) } ) |
38 |
7 31 19 4
|
lfl0f |
|- ( U e. LMod -> ( ( Base ` U ) X. { ( 0g ` R ) } ) e. F ) |
39 |
7 31 19 4 5
|
lkr0f |
|- ( ( U e. LMod /\ ( ( Base ` U ) X. { ( 0g ` R ) } ) e. F ) -> ( ( L ` ( ( Base ` U ) X. { ( 0g ` R ) } ) ) = ( Base ` U ) <-> ( ( Base ` U ) X. { ( 0g ` R ) } ) = ( ( Base ` U ) X. { ( 0g ` R ) } ) ) ) |
40 |
14 38 39
|
syl2anc2 |
|- ( ph -> ( ( L ` ( ( Base ` U ) X. { ( 0g ` R ) } ) ) = ( Base ` U ) <-> ( ( Base ` U ) X. { ( 0g ` R ) } ) = ( ( Base ` U ) X. { ( 0g ` R ) } ) ) ) |
41 |
37 40
|
mpbiri |
|- ( ph -> ( L ` ( ( Base ` U ) X. { ( 0g ` R ) } ) ) = ( Base ` U ) ) |
42 |
36 41
|
eqtrd |
|- ( ph -> ( L ` ( ( 0g ` R ) .x. G ) ) = ( Base ` U ) ) |
43 |
22 42
|
sylan9eqr |
|- ( ( ph /\ X = ( 0g ` R ) ) -> ( L ` ( X .x. G ) ) = ( Base ` U ) ) |
44 |
43
|
fveq2d |
|- ( ( ph /\ X = ( 0g ` R ) ) -> ( ._|_ ` ( L ` ( X .x. G ) ) ) = ( ._|_ ` ( Base ` U ) ) ) |
45 |
44
|
fveq2d |
|- ( ( ph /\ X = ( 0g ` R ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( X .x. G ) ) ) ) = ( ._|_ ` ( ._|_ ` ( Base ` U ) ) ) ) |
46 |
21 45 43
|
3eqtr4d |
|- ( ( ph /\ X = ( 0g ` R ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( X .x. G ) ) ) ) = ( L ` ( X .x. G ) ) ) |
47 |
16
|
simprd |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) |
48 |
47
|
adantr |
|- ( ( ph /\ X =/= ( 0g ` R ) ) -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) |
49 |
1 3 11
|
dvhlvec |
|- ( ph -> U e. LVec ) |
50 |
49
|
adantr |
|- ( ( ph /\ X =/= ( 0g ` R ) ) -> U e. LVec ) |
51 |
17
|
adantr |
|- ( ( ph /\ X =/= ( 0g ` R ) ) -> G e. F ) |
52 |
12
|
adantr |
|- ( ( ph /\ X =/= ( 0g ` R ) ) -> X e. B ) |
53 |
|
simpr |
|- ( ( ph /\ X =/= ( 0g ` R ) ) -> X =/= ( 0g ` R ) ) |
54 |
7 8 31 4 5 6 9 50 51 52 53
|
ldualkrsc |
|- ( ( ph /\ X =/= ( 0g ` R ) ) -> ( L ` ( X .x. G ) ) = ( L ` G ) ) |
55 |
54
|
fveq2d |
|- ( ( ph /\ X =/= ( 0g ` R ) ) -> ( ._|_ ` ( L ` ( X .x. G ) ) ) = ( ._|_ ` ( L ` G ) ) ) |
56 |
55
|
fveq2d |
|- ( ( ph /\ X =/= ( 0g ` R ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( X .x. G ) ) ) ) = ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) ) |
57 |
48 56 54
|
3eqtr4d |
|- ( ( ph /\ X =/= ( 0g ` R ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( X .x. G ) ) ) ) = ( L ` ( X .x. G ) ) ) |
58 |
46 57
|
pm2.61dane |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( X .x. G ) ) ) ) = ( L ` ( X .x. G ) ) ) |
59 |
10
|
lcfl1lem |
|- ( ( X .x. G ) e. C <-> ( ( X .x. G ) e. F /\ ( ._|_ ` ( ._|_ ` ( L ` ( X .x. G ) ) ) ) = ( L ` ( X .x. G ) ) ) ) |
60 |
18 58 59
|
sylanbrc |
|- ( ph -> ( X .x. G ) e. C ) |