| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lclkrlem2a.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lclkrlem2a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lclkrlem2a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
lclkrlem2a.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 6 |
|
lclkrlem2a.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 7 |
|
lclkrlem2a.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 8 |
|
lclkrlem2a.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 9 |
|
lclkrlem2a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
lclkrlem2a.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 11 |
|
lclkrlem2a.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 12 |
|
lclkrlem2a.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 13 |
|
lclkrlem2a.e |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ≠ ( ⊥ ‘ { 𝑌 } ) ) |
| 14 |
|
lclkrlem2a.d |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ) |
| 15 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 16 |
|
eqid |
⊢ ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 ) |
| 17 |
1 3 9
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 18 |
1 2 3 4 5 16 9 10
|
dochsnshp |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝐵 } ) ∈ ( LSHyp ‘ 𝑈 ) ) |
| 19 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 20 |
4 7 5 8 19 11
|
lsatlspsn |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) |
| 21 |
4 7 5 8 19 12
|
lsatlspsn |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ 𝐴 ) |
| 22 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 23 |
22
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
| 24 |
1 3 2 4 7 9 23
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 25 |
12
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 26 |
25
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
| 27 |
1 3 2 4 7 9 26
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 28 |
24 27
|
eqeq12d |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( ⊥ ‘ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( ⊥ ‘ { 𝑋 } ) = ( ⊥ ‘ { 𝑌 } ) ) ) |
| 29 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 30 |
1 3 4 7 29
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 31 |
9 22 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 32 |
1 3 4 7 29
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 33 |
9 25 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 34 |
1 29 2 9 31 33
|
doch11 |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( ⊥ ‘ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 35 |
28 34
|
bitr3d |
⊢ ( 𝜑 → ( ( ⊥ ‘ { 𝑋 } ) = ( ⊥ ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 36 |
35
|
necon3bid |
⊢ ( 𝜑 → ( ( ⊥ ‘ { 𝑋 } ) ≠ ( ⊥ ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 37 |
13 36
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 38 |
10
|
eldifad |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 39 |
38
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ 𝑉 ) |
| 40 |
1 3 4 15 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝐵 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 41 |
9 39 40
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 42 |
4 15 7 19 41 22
|
ellspsn5b |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 43 |
14 42
|
mtbid |
⊢ ( 𝜑 → ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ { 𝐵 } ) ) |
| 44 |
15 6 16 8 17 18 20 21 37 43
|
lshpat |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ { 𝐵 } ) ) ∈ 𝐴 ) |