Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lclkrlem2a.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lclkrlem2a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lclkrlem2a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lclkrlem2a.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
lclkrlem2a.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
7 |
|
lclkrlem2a.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
lclkrlem2a.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
9 |
|
lclkrlem2a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lclkrlem2a.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑉 ∖ { 0 } ) ) |
11 |
|
lclkrlem2a.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
12 |
|
lclkrlem2a.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
13 |
|
lclkrlem2a.e |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ≠ ( ⊥ ‘ { 𝑌 } ) ) |
14 |
|
lclkrlem2a.d |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ) |
15 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
16 |
|
eqid |
⊢ ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 ) |
17 |
1 3 9
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
18 |
1 2 3 4 5 16 9 10
|
dochsnshp |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝐵 } ) ∈ ( LSHyp ‘ 𝑈 ) ) |
19 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
20 |
4 7 5 8 19 11
|
lsatlspsn |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) |
21 |
4 7 5 8 19 12
|
lsatlspsn |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ 𝐴 ) |
22 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
23 |
22
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
24 |
1 3 2 4 7 9 23
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
25 |
12
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
26 |
25
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
27 |
1 3 2 4 7 9 26
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( ⊥ ‘ { 𝑌 } ) ) |
28 |
24 27
|
eqeq12d |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( ⊥ ‘ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( ⊥ ‘ { 𝑋 } ) = ( ⊥ ‘ { 𝑌 } ) ) ) |
29 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
30 |
1 3 4 7 29
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
31 |
9 22 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
32 |
1 3 4 7 29
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
33 |
9 25 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
34 |
1 29 2 9 31 33
|
doch11 |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( ⊥ ‘ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
35 |
28 34
|
bitr3d |
⊢ ( 𝜑 → ( ( ⊥ ‘ { 𝑋 } ) = ( ⊥ ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
36 |
35
|
necon3bid |
⊢ ( 𝜑 → ( ( ⊥ ‘ { 𝑋 } ) ≠ ( ⊥ ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
37 |
13 36
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
38 |
10
|
eldifad |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
39 |
38
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ 𝑉 ) |
40 |
1 3 4 15 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝐵 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
41 |
9 39 40
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
42 |
4 15 7 19 41 22
|
lspsnel5 |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ { 𝐵 } ) ) ) |
43 |
14 42
|
mtbid |
⊢ ( 𝜑 → ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ { 𝐵 } ) ) |
44 |
15 6 16 8 17 18 20 21 37 43
|
lshpat |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ { 𝐵 } ) ) ∈ 𝐴 ) |