Metamath Proof Explorer


Theorem lclkrlem2a

Description: Lemma for lclkr . Use lshpat to show that the intersection of a hyperplane with a noncomparable sum of atoms is an atom. (Contributed by NM, 16-Jan-2015)

Ref Expression
Hypotheses lclkrlem2a.h 𝐻 = ( LHyp ‘ 𝐾 )
lclkrlem2a.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem2a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem2a.v 𝑉 = ( Base ‘ 𝑈 )
lclkrlem2a.z 0 = ( 0g𝑈 )
lclkrlem2a.p = ( LSSum ‘ 𝑈 )
lclkrlem2a.n 𝑁 = ( LSpan ‘ 𝑈 )
lclkrlem2a.a 𝐴 = ( LSAtoms ‘ 𝑈 )
lclkrlem2a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lclkrlem2a.b ( 𝜑𝐵 ∈ ( 𝑉 ∖ { 0 } ) )
lclkrlem2a.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
lclkrlem2a.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
lclkrlem2a.e ( 𝜑 → ( ‘ { 𝑋 } ) ≠ ( ‘ { 𝑌 } ) )
lclkrlem2a.d ( 𝜑 → ¬ 𝑋 ∈ ( ‘ { 𝐵 } ) )
Assertion lclkrlem2a ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ‘ { 𝐵 } ) ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 lclkrlem2a.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lclkrlem2a.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lclkrlem2a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lclkrlem2a.v 𝑉 = ( Base ‘ 𝑈 )
5 lclkrlem2a.z 0 = ( 0g𝑈 )
6 lclkrlem2a.p = ( LSSum ‘ 𝑈 )
7 lclkrlem2a.n 𝑁 = ( LSpan ‘ 𝑈 )
8 lclkrlem2a.a 𝐴 = ( LSAtoms ‘ 𝑈 )
9 lclkrlem2a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 lclkrlem2a.b ( 𝜑𝐵 ∈ ( 𝑉 ∖ { 0 } ) )
11 lclkrlem2a.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
12 lclkrlem2a.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
13 lclkrlem2a.e ( 𝜑 → ( ‘ { 𝑋 } ) ≠ ( ‘ { 𝑌 } ) )
14 lclkrlem2a.d ( 𝜑 → ¬ 𝑋 ∈ ( ‘ { 𝐵 } ) )
15 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
16 eqid ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 )
17 1 3 9 dvhlvec ( 𝜑𝑈 ∈ LVec )
18 1 2 3 4 5 16 9 10 dochsnshp ( 𝜑 → ( ‘ { 𝐵 } ) ∈ ( LSHyp ‘ 𝑈 ) )
19 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
20 4 7 5 8 19 11 lsatlspsn ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 )
21 4 7 5 8 19 12 lsatlspsn ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ 𝐴 )
22 11 eldifad ( 𝜑𝑋𝑉 )
23 22 snssd ( 𝜑 → { 𝑋 } ⊆ 𝑉 )
24 1 3 2 4 7 9 23 dochocsp ( 𝜑 → ( ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( ‘ { 𝑋 } ) )
25 12 eldifad ( 𝜑𝑌𝑉 )
26 25 snssd ( 𝜑 → { 𝑌 } ⊆ 𝑉 )
27 1 3 2 4 7 9 26 dochocsp ( 𝜑 → ( ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( ‘ { 𝑌 } ) )
28 24 27 eqeq12d ( 𝜑 → ( ( ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( ‘ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( ‘ { 𝑋 } ) = ( ‘ { 𝑌 } ) ) )
29 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
30 1 3 4 7 29 dihlsprn ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
31 9 22 30 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
32 1 3 4 7 29 dihlsprn ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
33 9 25 32 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
34 1 29 2 9 31 33 doch11 ( 𝜑 → ( ( ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( ‘ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) )
35 28 34 bitr3d ( 𝜑 → ( ( ‘ { 𝑋 } ) = ( ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) )
36 35 necon3bid ( 𝜑 → ( ( ‘ { 𝑋 } ) ≠ ( ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) )
37 13 36 mpbid ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
38 10 eldifad ( 𝜑𝐵𝑉 )
39 38 snssd ( 𝜑 → { 𝐵 } ⊆ 𝑉 )
40 1 3 4 15 2 dochlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ { 𝐵 } ⊆ 𝑉 ) → ( ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) )
41 9 39 40 syl2anc ( 𝜑 → ( ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) )
42 4 15 7 19 41 22 lspsnel5 ( 𝜑 → ( 𝑋 ∈ ( ‘ { 𝐵 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ‘ { 𝐵 } ) ) )
43 14 42 mtbid ( 𝜑 → ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ‘ { 𝐵 } ) )
44 15 6 16 8 17 18 20 21 37 43 lshpat ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ‘ { 𝐵 } ) ) ∈ 𝐴 )