Metamath Proof Explorer


Theorem lshpat

Description: Create an atom under a hyperplane. Part of proof of Lemma B in Crawley p. 112. ( lhpat analog.) TODO: This changes U C V in l1cvpat and l1cvat to U e. H , which in turn change U e. H in islshpcv to U C V , with a couple of conversions of span to atom. Seems convoluted. Would a direct proof be better? (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses lshpat.s 𝑆 = ( LSubSp ‘ 𝑊 )
lshpat.p = ( LSSum ‘ 𝑊 )
ishpat.h 𝐻 = ( LSHyp ‘ 𝑊 )
lshpat.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lshpat.w ( 𝜑𝑊 ∈ LVec )
lshpat.l ( 𝜑𝑈𝐻 )
lshpat.q ( 𝜑𝑄𝐴 )
lshpat.r ( 𝜑𝑅𝐴 )
lshpat.n ( 𝜑𝑄𝑅 )
lshpat.m ( 𝜑 → ¬ 𝑄𝑈 )
Assertion lshpat ( 𝜑 → ( ( 𝑄 𝑅 ) ∩ 𝑈 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 lshpat.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lshpat.p = ( LSSum ‘ 𝑊 )
3 ishpat.h 𝐻 = ( LSHyp ‘ 𝑊 )
4 lshpat.a 𝐴 = ( LSAtoms ‘ 𝑊 )
5 lshpat.w ( 𝜑𝑊 ∈ LVec )
6 lshpat.l ( 𝜑𝑈𝐻 )
7 lshpat.q ( 𝜑𝑄𝐴 )
8 lshpat.r ( 𝜑𝑅𝐴 )
9 lshpat.n ( 𝜑𝑄𝑅 )
10 lshpat.m ( 𝜑 → ¬ 𝑄𝑈 )
11 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
12 eqid ( ⋖L𝑊 ) = ( ⋖L𝑊 )
13 11 1 3 12 5 islshpcv ( 𝜑 → ( 𝑈𝐻 ↔ ( 𝑈𝑆𝑈 ( ⋖L𝑊 ) ( Base ‘ 𝑊 ) ) ) )
14 6 13 mpbid ( 𝜑 → ( 𝑈𝑆𝑈 ( ⋖L𝑊 ) ( Base ‘ 𝑊 ) ) )
15 14 simpld ( 𝜑𝑈𝑆 )
16 14 simprd ( 𝜑𝑈 ( ⋖L𝑊 ) ( Base ‘ 𝑊 ) )
17 11 1 2 4 12 5 15 7 8 9 16 10 l1cvat ( 𝜑 → ( ( 𝑄 𝑅 ) ∩ 𝑈 ) ∈ 𝐴 )