Description: Create an atom under a hyperplane. Part of proof of Lemma B in Crawley p. 112. ( lhpat analog.) TODO: This changes U C V in l1cvpat and l1cvat to U e. H , which in turn change U e. H in islshpcv to U C V , with a couple of conversions of span to atom. Seems convoluted. Would a direct proof be better? (Contributed by NM, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lshpat.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| lshpat.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | ||
| ishpat.h | ⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) | ||
| lshpat.a | ⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) | ||
| lshpat.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lshpat.l | ⊢ ( 𝜑 → 𝑈 ∈ 𝐻 ) | ||
| lshpat.q | ⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) | ||
| lshpat.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) | ||
| lshpat.n | ⊢ ( 𝜑 → 𝑄 ≠ 𝑅 ) | ||
| lshpat.m | ⊢ ( 𝜑 → ¬ 𝑄 ⊆ 𝑈 ) | ||
| Assertion | lshpat | ⊢ ( 𝜑 → ( ( 𝑄 ⊕ 𝑅 ) ∩ 𝑈 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshpat.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 2 | lshpat.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | |
| 3 | ishpat.h | ⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) | |
| 4 | lshpat.a | ⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) | |
| 5 | lshpat.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 6 | lshpat.l | ⊢ ( 𝜑 → 𝑈 ∈ 𝐻 ) | |
| 7 | lshpat.q | ⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) | |
| 8 | lshpat.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) | |
| 9 | lshpat.n | ⊢ ( 𝜑 → 𝑄 ≠ 𝑅 ) | |
| 10 | lshpat.m | ⊢ ( 𝜑 → ¬ 𝑄 ⊆ 𝑈 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 12 | eqid | ⊢ ( ⋖L ‘ 𝑊 ) = ( ⋖L ‘ 𝑊 ) | |
| 13 | 11 1 3 12 5 | islshpcv | ⊢ ( 𝜑 → ( 𝑈 ∈ 𝐻 ↔ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ( ⋖L ‘ 𝑊 ) ( Base ‘ 𝑊 ) ) ) ) |
| 14 | 6 13 | mpbid | ⊢ ( 𝜑 → ( 𝑈 ∈ 𝑆 ∧ 𝑈 ( ⋖L ‘ 𝑊 ) ( Base ‘ 𝑊 ) ) ) |
| 15 | 14 | simpld | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 16 | 14 | simprd | ⊢ ( 𝜑 → 𝑈 ( ⋖L ‘ 𝑊 ) ( Base ‘ 𝑊 ) ) |
| 17 | 11 1 2 4 12 5 15 7 8 9 16 10 | l1cvat | ⊢ ( 𝜑 → ( ( 𝑄 ⊕ 𝑅 ) ∩ 𝑈 ) ∈ 𝐴 ) |