Step |
Hyp |
Ref |
Expression |
1 |
|
l1cvpat.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
l1cvpat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
l1cvpat.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
4 |
|
l1cvpat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
5 |
|
l1cvpat.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
6 |
|
l1cvpat.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
7 |
|
l1cvpat.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
8 |
|
l1cvpat.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
9 |
|
l1cvpat.l |
⊢ ( 𝜑 → 𝑈 𝐶 𝑉 ) |
10 |
|
l1cvpat.m |
⊢ ( 𝜑 → ¬ 𝑄 ⊆ 𝑈 ) |
11 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
13 |
1 11 12 4
|
islsat |
⊢ ( 𝑊 ∈ LVec → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
14 |
6 13
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
15 |
8 14
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) |
16 |
|
eldifi |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) → 𝑣 ∈ 𝑉 ) |
17 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
18 |
6 17
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
19 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → 𝑊 ∈ LMod ) |
20 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → 𝑈 ∈ 𝑆 ) |
21 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → 𝑣 ∈ 𝑉 ) |
22 |
1 2 11 19 20 21
|
lspsnel5 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( 𝑣 ∈ 𝑈 ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ⊆ 𝑈 ) ) |
23 |
22
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( ¬ 𝑣 ∈ 𝑈 ↔ ¬ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ⊆ 𝑈 ) ) |
24 |
|
eqid |
⊢ ( LSHyp ‘ 𝑊 ) = ( LSHyp ‘ 𝑊 ) |
25 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → 𝑊 ∈ LVec ) |
26 |
1 2 24 5 6
|
islshpcv |
⊢ ( 𝜑 → ( 𝑈 ∈ ( LSHyp ‘ 𝑊 ) ↔ ( 𝑈 ∈ 𝑆 ∧ 𝑈 𝐶 𝑉 ) ) ) |
27 |
7 9 26
|
mpbir2and |
⊢ ( 𝜑 → 𝑈 ∈ ( LSHyp ‘ 𝑊 ) ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → 𝑈 ∈ ( LSHyp ‘ 𝑊 ) ) |
29 |
1 11 3 24 25 28 21
|
lshpnelb |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( ¬ 𝑣 ∈ 𝑈 ↔ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) |
30 |
29
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( ¬ 𝑣 ∈ 𝑈 → ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) |
31 |
23 30
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( ¬ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ⊆ 𝑈 → ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) |
32 |
|
sseq1 |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑄 ⊆ 𝑈 ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ⊆ 𝑈 ) ) |
33 |
32
|
notbid |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( ¬ 𝑄 ⊆ 𝑈 ↔ ¬ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ⊆ 𝑈 ) ) |
34 |
|
oveq2 |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑈 ⊕ 𝑄 ) = ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
35 |
34
|
eqeq1d |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( ( 𝑈 ⊕ 𝑄 ) = 𝑉 ↔ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) |
36 |
33 35
|
imbi12d |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( ( ¬ 𝑄 ⊆ 𝑈 → ( 𝑈 ⊕ 𝑄 ) = 𝑉 ) ↔ ( ¬ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ⊆ 𝑈 → ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
37 |
36
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( ( ¬ 𝑄 ⊆ 𝑈 → ( 𝑈 ⊕ 𝑄 ) = 𝑉 ) ↔ ( ¬ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ⊆ 𝑈 → ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
38 |
31 37
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( ¬ 𝑄 ⊆ 𝑈 → ( 𝑈 ⊕ 𝑄 ) = 𝑉 ) ) |
39 |
38
|
3exp |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝑉 → ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( ¬ 𝑄 ⊆ 𝑈 → ( 𝑈 ⊕ 𝑄 ) = 𝑉 ) ) ) ) |
40 |
16 39
|
syl5 |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) → ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( ¬ 𝑄 ⊆ 𝑈 → ( 𝑈 ⊕ 𝑄 ) = 𝑉 ) ) ) ) |
41 |
40
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( ¬ 𝑄 ⊆ 𝑈 → ( 𝑈 ⊕ 𝑄 ) = 𝑉 ) ) ) |
42 |
15 10 41
|
mp2d |
⊢ ( 𝜑 → ( 𝑈 ⊕ 𝑄 ) = 𝑉 ) |