| Step |
Hyp |
Ref |
Expression |
| 1 |
|
l1cvat.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
l1cvat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
l1cvat.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 4 |
|
l1cvat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 5 |
|
l1cvat.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
| 6 |
|
l1cvat.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 7 |
|
l1cvat.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 8 |
|
l1cvat.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 9 |
|
l1cvat.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
| 10 |
|
l1cvat.n |
⊢ ( 𝜑 → 𝑄 ≠ 𝑅 ) |
| 11 |
|
l1cvat.l |
⊢ ( 𝜑 → 𝑈 𝐶 𝑉 ) |
| 12 |
|
l1cvat.m |
⊢ ( 𝜑 → ¬ 𝑄 ⊆ 𝑈 ) |
| 13 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 14 |
6 13
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 15 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
| 17 |
2
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 18 |
14 17
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 19 |
2 4 14 8
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ 𝑆 ) |
| 20 |
18 19
|
sseldd |
⊢ ( 𝜑 → 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 21 |
2 4 14 9
|
lsatlssel |
⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) |
| 22 |
18 21
|
sseldd |
⊢ ( 𝜑 → 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 23 |
3
|
lsmcom |
⊢ ( ( 𝑊 ∈ Abel ∧ 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑄 ⊕ 𝑅 ) = ( 𝑅 ⊕ 𝑄 ) ) |
| 24 |
16 20 22 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ⊕ 𝑅 ) = ( 𝑅 ⊕ 𝑄 ) ) |
| 25 |
24
|
ineq1d |
⊢ ( 𝜑 → ( ( 𝑄 ⊕ 𝑅 ) ∩ 𝑈 ) = ( ( 𝑅 ⊕ 𝑄 ) ∩ 𝑈 ) ) |
| 26 |
|
incom |
⊢ ( ( 𝑅 ⊕ 𝑄 ) ∩ 𝑈 ) = ( 𝑈 ∩ ( 𝑅 ⊕ 𝑄 ) ) |
| 27 |
25 26
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑄 ⊕ 𝑅 ) ∩ 𝑈 ) = ( 𝑈 ∩ ( 𝑅 ⊕ 𝑄 ) ) ) |
| 28 |
10
|
necomd |
⊢ ( 𝜑 → 𝑅 ≠ 𝑄 ) |
| 29 |
1 4 14 9
|
lsatssv |
⊢ ( 𝜑 → 𝑅 ⊆ 𝑉 ) |
| 30 |
1 2 3 4 5 6 7 8 11 12
|
l1cvpat |
⊢ ( 𝜑 → ( 𝑈 ⊕ 𝑄 ) = 𝑉 ) |
| 31 |
29 30
|
sseqtrrd |
⊢ ( 𝜑 → 𝑅 ⊆ ( 𝑈 ⊕ 𝑄 ) ) |
| 32 |
2 3 4 6 7 9 8 28 12 31
|
lsatcvat3 |
⊢ ( 𝜑 → ( 𝑈 ∩ ( 𝑅 ⊕ 𝑄 ) ) ∈ 𝐴 ) |
| 33 |
27 32
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑄 ⊕ 𝑅 ) ∩ 𝑈 ) ∈ 𝐴 ) |