Metamath Proof Explorer


Theorem l1cvat

Description: Create an atom under an element covered by the lattice unit. Part of proof of Lemma B in Crawley p. 112. ( 1cvrat analog.) (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses l1cvat.v 𝑉 = ( Base ‘ 𝑊 )
l1cvat.s 𝑆 = ( LSubSp ‘ 𝑊 )
l1cvat.p = ( LSSum ‘ 𝑊 )
l1cvat.a 𝐴 = ( LSAtoms ‘ 𝑊 )
l1cvat.c 𝐶 = ( ⋖L𝑊 )
l1cvat.w ( 𝜑𝑊 ∈ LVec )
l1cvat.u ( 𝜑𝑈𝑆 )
l1cvat.q ( 𝜑𝑄𝐴 )
l1cvat.r ( 𝜑𝑅𝐴 )
l1cvat.n ( 𝜑𝑄𝑅 )
l1cvat.l ( 𝜑𝑈 𝐶 𝑉 )
l1cvat.m ( 𝜑 → ¬ 𝑄𝑈 )
Assertion l1cvat ( 𝜑 → ( ( 𝑄 𝑅 ) ∩ 𝑈 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 l1cvat.v 𝑉 = ( Base ‘ 𝑊 )
2 l1cvat.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 l1cvat.p = ( LSSum ‘ 𝑊 )
4 l1cvat.a 𝐴 = ( LSAtoms ‘ 𝑊 )
5 l1cvat.c 𝐶 = ( ⋖L𝑊 )
6 l1cvat.w ( 𝜑𝑊 ∈ LVec )
7 l1cvat.u ( 𝜑𝑈𝑆 )
8 l1cvat.q ( 𝜑𝑄𝐴 )
9 l1cvat.r ( 𝜑𝑅𝐴 )
10 l1cvat.n ( 𝜑𝑄𝑅 )
11 l1cvat.l ( 𝜑𝑈 𝐶 𝑉 )
12 l1cvat.m ( 𝜑 → ¬ 𝑄𝑈 )
13 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
14 6 13 syl ( 𝜑𝑊 ∈ LMod )
15 lmodabl ( 𝑊 ∈ LMod → 𝑊 ∈ Abel )
16 14 15 syl ( 𝜑𝑊 ∈ Abel )
17 2 lsssssubg ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) )
18 14 17 syl ( 𝜑𝑆 ⊆ ( SubGrp ‘ 𝑊 ) )
19 2 4 14 8 lsatlssel ( 𝜑𝑄𝑆 )
20 18 19 sseldd ( 𝜑𝑄 ∈ ( SubGrp ‘ 𝑊 ) )
21 2 4 14 9 lsatlssel ( 𝜑𝑅𝑆 )
22 18 21 sseldd ( 𝜑𝑅 ∈ ( SubGrp ‘ 𝑊 ) )
23 3 lsmcom ( ( 𝑊 ∈ Abel ∧ 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑄 𝑅 ) = ( 𝑅 𝑄 ) )
24 16 20 22 23 syl3anc ( 𝜑 → ( 𝑄 𝑅 ) = ( 𝑅 𝑄 ) )
25 24 ineq1d ( 𝜑 → ( ( 𝑄 𝑅 ) ∩ 𝑈 ) = ( ( 𝑅 𝑄 ) ∩ 𝑈 ) )
26 incom ( ( 𝑅 𝑄 ) ∩ 𝑈 ) = ( 𝑈 ∩ ( 𝑅 𝑄 ) )
27 25 26 eqtrdi ( 𝜑 → ( ( 𝑄 𝑅 ) ∩ 𝑈 ) = ( 𝑈 ∩ ( 𝑅 𝑄 ) ) )
28 10 necomd ( 𝜑𝑅𝑄 )
29 1 4 14 9 lsatssv ( 𝜑𝑅𝑉 )
30 1 2 3 4 5 6 7 8 11 12 l1cvpat ( 𝜑 → ( 𝑈 𝑄 ) = 𝑉 )
31 29 30 sseqtrrd ( 𝜑𝑅 ⊆ ( 𝑈 𝑄 ) )
32 2 3 4 6 7 9 8 28 12 31 lsatcvat3 ( 𝜑 → ( 𝑈 ∩ ( 𝑅 𝑄 ) ) ∈ 𝐴 )
33 27 32 eqeltrd ( 𝜑 → ( ( 𝑄 𝑅 ) ∩ 𝑈 ) ∈ 𝐴 )