Step |
Hyp |
Ref |
Expression |
1 |
|
l1cvat.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
l1cvat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
l1cvat.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
4 |
|
l1cvat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
5 |
|
l1cvat.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
6 |
|
l1cvat.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
7 |
|
l1cvat.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
8 |
|
l1cvat.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
9 |
|
l1cvat.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
10 |
|
l1cvat.n |
⊢ ( 𝜑 → 𝑄 ≠ 𝑅 ) |
11 |
|
l1cvat.l |
⊢ ( 𝜑 → 𝑈 𝐶 𝑉 ) |
12 |
|
l1cvat.m |
⊢ ( 𝜑 → ¬ 𝑄 ⊆ 𝑈 ) |
13 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
14 |
6 13
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
15 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
17 |
2
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
18 |
14 17
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
19 |
2 4 14 8
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ 𝑆 ) |
20 |
18 19
|
sseldd |
⊢ ( 𝜑 → 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ) |
21 |
2 4 14 9
|
lsatlssel |
⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) |
22 |
18 21
|
sseldd |
⊢ ( 𝜑 → 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) |
23 |
3
|
lsmcom |
⊢ ( ( 𝑊 ∈ Abel ∧ 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑄 ⊕ 𝑅 ) = ( 𝑅 ⊕ 𝑄 ) ) |
24 |
16 20 22 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ⊕ 𝑅 ) = ( 𝑅 ⊕ 𝑄 ) ) |
25 |
24
|
ineq1d |
⊢ ( 𝜑 → ( ( 𝑄 ⊕ 𝑅 ) ∩ 𝑈 ) = ( ( 𝑅 ⊕ 𝑄 ) ∩ 𝑈 ) ) |
26 |
|
incom |
⊢ ( ( 𝑅 ⊕ 𝑄 ) ∩ 𝑈 ) = ( 𝑈 ∩ ( 𝑅 ⊕ 𝑄 ) ) |
27 |
25 26
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑄 ⊕ 𝑅 ) ∩ 𝑈 ) = ( 𝑈 ∩ ( 𝑅 ⊕ 𝑄 ) ) ) |
28 |
10
|
necomd |
⊢ ( 𝜑 → 𝑅 ≠ 𝑄 ) |
29 |
1 4 14 9
|
lsatssv |
⊢ ( 𝜑 → 𝑅 ⊆ 𝑉 ) |
30 |
1 2 3 4 5 6 7 8 11 12
|
l1cvpat |
⊢ ( 𝜑 → ( 𝑈 ⊕ 𝑄 ) = 𝑉 ) |
31 |
29 30
|
sseqtrrd |
⊢ ( 𝜑 → 𝑅 ⊆ ( 𝑈 ⊕ 𝑄 ) ) |
32 |
2 3 4 6 7 9 8 28 12 31
|
lsatcvat3 |
⊢ ( 𝜑 → ( 𝑈 ∩ ( 𝑅 ⊕ 𝑄 ) ) ∈ 𝐴 ) |
33 |
27 32
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑄 ⊕ 𝑅 ) ∩ 𝑈 ) ∈ 𝐴 ) |