| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatcvat3.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 2 |
|
lsatcvat3.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 3 |
|
lsatcvat3.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 4 |
|
lsatcvat3.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 5 |
|
lsatcvat3.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 6 |
|
lsatcvat3.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 7 |
|
lsatcvat3.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
| 8 |
|
lsatcvat3.n |
⊢ ( 𝜑 → 𝑄 ≠ 𝑅 ) |
| 9 |
|
lsatcvat3.m |
⊢ ( 𝜑 → ¬ 𝑅 ⊆ 𝑈 ) |
| 10 |
|
lsatcvat3.l |
⊢ ( 𝜑 → 𝑄 ⊆ ( 𝑈 ⊕ 𝑅 ) ) |
| 11 |
|
eqid |
⊢ ( ⋖L ‘ 𝑊 ) = ( ⋖L ‘ 𝑊 ) |
| 12 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 14 |
1 3 13 6
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ 𝑆 ) |
| 15 |
1 3 13 7
|
lsatlssel |
⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) |
| 16 |
1 2
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑄 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆 ) → ( 𝑄 ⊕ 𝑅 ) ∈ 𝑆 ) |
| 17 |
13 14 15 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ⊕ 𝑅 ) ∈ 𝑆 ) |
| 18 |
1
|
lssincl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ ( 𝑄 ⊕ 𝑅 ) ∈ 𝑆 ) → ( 𝑈 ∩ ( 𝑄 ⊕ 𝑅 ) ) ∈ 𝑆 ) |
| 19 |
13 5 17 18
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ∩ ( 𝑄 ⊕ 𝑅 ) ) ∈ 𝑆 ) |
| 20 |
1 2 3 11 4 5 7
|
lcv1 |
⊢ ( 𝜑 → ( ¬ 𝑅 ⊆ 𝑈 ↔ 𝑈 ( ⋖L ‘ 𝑊 ) ( 𝑈 ⊕ 𝑅 ) ) ) |
| 21 |
9 20
|
mpbid |
⊢ ( 𝜑 → 𝑈 ( ⋖L ‘ 𝑊 ) ( 𝑈 ⊕ 𝑅 ) ) |
| 22 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
| 23 |
13 22
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
| 24 |
1
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 25 |
13 24
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 26 |
25 14
|
sseldd |
⊢ ( 𝜑 → 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 27 |
25 15
|
sseldd |
⊢ ( 𝜑 → 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 28 |
2
|
lsmcom |
⊢ ( ( 𝑊 ∈ Abel ∧ 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑄 ⊕ 𝑅 ) = ( 𝑅 ⊕ 𝑄 ) ) |
| 29 |
23 26 27 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ⊕ 𝑅 ) = ( 𝑅 ⊕ 𝑄 ) ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) = ( 𝑈 ⊕ ( 𝑅 ⊕ 𝑄 ) ) ) |
| 31 |
25 5
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 32 |
2
|
lsmass |
⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝑈 ⊕ 𝑅 ) ⊕ 𝑄 ) = ( 𝑈 ⊕ ( 𝑅 ⊕ 𝑄 ) ) ) |
| 33 |
31 27 26 32
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑈 ⊕ 𝑅 ) ⊕ 𝑄 ) = ( 𝑈 ⊕ ( 𝑅 ⊕ 𝑄 ) ) ) |
| 34 |
30 33
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) = ( ( 𝑈 ⊕ 𝑅 ) ⊕ 𝑄 ) ) |
| 35 |
1 2
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆 ) → ( 𝑈 ⊕ 𝑅 ) ∈ 𝑆 ) |
| 36 |
13 5 15 35
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ⊕ 𝑅 ) ∈ 𝑆 ) |
| 37 |
25 36
|
sseldd |
⊢ ( 𝜑 → ( 𝑈 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 38 |
2
|
lsmless2 |
⊢ ( ( ( 𝑈 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑈 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑄 ⊆ ( 𝑈 ⊕ 𝑅 ) ) → ( ( 𝑈 ⊕ 𝑅 ) ⊕ 𝑄 ) ⊆ ( ( 𝑈 ⊕ 𝑅 ) ⊕ ( 𝑈 ⊕ 𝑅 ) ) ) |
| 39 |
37 37 10 38
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑈 ⊕ 𝑅 ) ⊕ 𝑄 ) ⊆ ( ( 𝑈 ⊕ 𝑅 ) ⊕ ( 𝑈 ⊕ 𝑅 ) ) ) |
| 40 |
34 39
|
eqsstrd |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) ⊆ ( ( 𝑈 ⊕ 𝑅 ) ⊕ ( 𝑈 ⊕ 𝑅 ) ) ) |
| 41 |
2
|
lsmidm |
⊢ ( ( 𝑈 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) → ( ( 𝑈 ⊕ 𝑅 ) ⊕ ( 𝑈 ⊕ 𝑅 ) ) = ( 𝑈 ⊕ 𝑅 ) ) |
| 42 |
37 41
|
syl |
⊢ ( 𝜑 → ( ( 𝑈 ⊕ 𝑅 ) ⊕ ( 𝑈 ⊕ 𝑅 ) ) = ( 𝑈 ⊕ 𝑅 ) ) |
| 43 |
40 42
|
sseqtrd |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) ⊆ ( 𝑈 ⊕ 𝑅 ) ) |
| 44 |
25 17
|
sseldd |
⊢ ( 𝜑 → ( 𝑄 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 45 |
2
|
lsmub2 |
⊢ ( ( 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) → 𝑅 ⊆ ( 𝑄 ⊕ 𝑅 ) ) |
| 46 |
26 27 45
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ⊆ ( 𝑄 ⊕ 𝑅 ) ) |
| 47 |
2
|
lsmless2 |
⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑄 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ⊆ ( 𝑄 ⊕ 𝑅 ) ) → ( 𝑈 ⊕ 𝑅 ) ⊆ ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) ) |
| 48 |
31 44 46 47
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ⊕ 𝑅 ) ⊆ ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) ) |
| 49 |
43 48
|
eqssd |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) = ( 𝑈 ⊕ 𝑅 ) ) |
| 50 |
21 49
|
breqtrrd |
⊢ ( 𝜑 → 𝑈 ( ⋖L ‘ 𝑊 ) ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) ) |
| 51 |
1 2 11 13 5 17 50
|
lcvexchlem4 |
⊢ ( 𝜑 → ( 𝑈 ∩ ( 𝑄 ⊕ 𝑅 ) ) ( ⋖L ‘ 𝑊 ) ( 𝑄 ⊕ 𝑅 ) ) |
| 52 |
1 2 3 11 4 19 6 7 8 51
|
lsatcvat2 |
⊢ ( 𝜑 → ( 𝑈 ∩ ( 𝑄 ⊕ 𝑅 ) ) ∈ 𝐴 ) |