Metamath Proof Explorer


Theorem lsatcvat3

Description: A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of PtakPulmannova p. 68. ( atcvat3i analog.) (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses lsatcvat3.s 𝑆 = ( LSubSp ‘ 𝑊 )
lsatcvat3.p = ( LSSum ‘ 𝑊 )
lsatcvat3.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lsatcvat3.w ( 𝜑𝑊 ∈ LVec )
lsatcvat3.u ( 𝜑𝑈𝑆 )
lsatcvat3.q ( 𝜑𝑄𝐴 )
lsatcvat3.r ( 𝜑𝑅𝐴 )
lsatcvat3.n ( 𝜑𝑄𝑅 )
lsatcvat3.m ( 𝜑 → ¬ 𝑅𝑈 )
lsatcvat3.l ( 𝜑𝑄 ⊆ ( 𝑈 𝑅 ) )
Assertion lsatcvat3 ( 𝜑 → ( 𝑈 ∩ ( 𝑄 𝑅 ) ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 lsatcvat3.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lsatcvat3.p = ( LSSum ‘ 𝑊 )
3 lsatcvat3.a 𝐴 = ( LSAtoms ‘ 𝑊 )
4 lsatcvat3.w ( 𝜑𝑊 ∈ LVec )
5 lsatcvat3.u ( 𝜑𝑈𝑆 )
6 lsatcvat3.q ( 𝜑𝑄𝐴 )
7 lsatcvat3.r ( 𝜑𝑅𝐴 )
8 lsatcvat3.n ( 𝜑𝑄𝑅 )
9 lsatcvat3.m ( 𝜑 → ¬ 𝑅𝑈 )
10 lsatcvat3.l ( 𝜑𝑄 ⊆ ( 𝑈 𝑅 ) )
11 eqid ( ⋖L𝑊 ) = ( ⋖L𝑊 )
12 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
13 4 12 syl ( 𝜑𝑊 ∈ LMod )
14 1 3 13 6 lsatlssel ( 𝜑𝑄𝑆 )
15 1 3 13 7 lsatlssel ( 𝜑𝑅𝑆 )
16 1 2 lsmcl ( ( 𝑊 ∈ LMod ∧ 𝑄𝑆𝑅𝑆 ) → ( 𝑄 𝑅 ) ∈ 𝑆 )
17 13 14 15 16 syl3anc ( 𝜑 → ( 𝑄 𝑅 ) ∈ 𝑆 )
18 1 lssincl ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ ( 𝑄 𝑅 ) ∈ 𝑆 ) → ( 𝑈 ∩ ( 𝑄 𝑅 ) ) ∈ 𝑆 )
19 13 5 17 18 syl3anc ( 𝜑 → ( 𝑈 ∩ ( 𝑄 𝑅 ) ) ∈ 𝑆 )
20 1 2 3 11 4 5 7 lcv1 ( 𝜑 → ( ¬ 𝑅𝑈𝑈 ( ⋖L𝑊 ) ( 𝑈 𝑅 ) ) )
21 9 20 mpbid ( 𝜑𝑈 ( ⋖L𝑊 ) ( 𝑈 𝑅 ) )
22 lmodabl ( 𝑊 ∈ LMod → 𝑊 ∈ Abel )
23 13 22 syl ( 𝜑𝑊 ∈ Abel )
24 1 lsssssubg ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) )
25 13 24 syl ( 𝜑𝑆 ⊆ ( SubGrp ‘ 𝑊 ) )
26 25 14 sseldd ( 𝜑𝑄 ∈ ( SubGrp ‘ 𝑊 ) )
27 25 15 sseldd ( 𝜑𝑅 ∈ ( SubGrp ‘ 𝑊 ) )
28 2 lsmcom ( ( 𝑊 ∈ Abel ∧ 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑄 𝑅 ) = ( 𝑅 𝑄 ) )
29 23 26 27 28 syl3anc ( 𝜑 → ( 𝑄 𝑅 ) = ( 𝑅 𝑄 ) )
30 29 oveq2d ( 𝜑 → ( 𝑈 ( 𝑄 𝑅 ) ) = ( 𝑈 ( 𝑅 𝑄 ) ) )
31 25 5 sseldd ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝑊 ) )
32 2 lsmass ( ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝑈 𝑅 ) 𝑄 ) = ( 𝑈 ( 𝑅 𝑄 ) ) )
33 31 27 26 32 syl3anc ( 𝜑 → ( ( 𝑈 𝑅 ) 𝑄 ) = ( 𝑈 ( 𝑅 𝑄 ) ) )
34 30 33 eqtr4d ( 𝜑 → ( 𝑈 ( 𝑄 𝑅 ) ) = ( ( 𝑈 𝑅 ) 𝑄 ) )
35 1 2 lsmcl ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑅𝑆 ) → ( 𝑈 𝑅 ) ∈ 𝑆 )
36 13 5 15 35 syl3anc ( 𝜑 → ( 𝑈 𝑅 ) ∈ 𝑆 )
37 25 36 sseldd ( 𝜑 → ( 𝑈 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) )
38 2 lsmless2 ( ( ( 𝑈 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑈 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑄 ⊆ ( 𝑈 𝑅 ) ) → ( ( 𝑈 𝑅 ) 𝑄 ) ⊆ ( ( 𝑈 𝑅 ) ( 𝑈 𝑅 ) ) )
39 37 37 10 38 syl3anc ( 𝜑 → ( ( 𝑈 𝑅 ) 𝑄 ) ⊆ ( ( 𝑈 𝑅 ) ( 𝑈 𝑅 ) ) )
40 34 39 eqsstrd ( 𝜑 → ( 𝑈 ( 𝑄 𝑅 ) ) ⊆ ( ( 𝑈 𝑅 ) ( 𝑈 𝑅 ) ) )
41 2 lsmidm ( ( 𝑈 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) → ( ( 𝑈 𝑅 ) ( 𝑈 𝑅 ) ) = ( 𝑈 𝑅 ) )
42 37 41 syl ( 𝜑 → ( ( 𝑈 𝑅 ) ( 𝑈 𝑅 ) ) = ( 𝑈 𝑅 ) )
43 40 42 sseqtrd ( 𝜑 → ( 𝑈 ( 𝑄 𝑅 ) ) ⊆ ( 𝑈 𝑅 ) )
44 25 17 sseldd ( 𝜑 → ( 𝑄 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) )
45 2 lsmub2 ( ( 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) → 𝑅 ⊆ ( 𝑄 𝑅 ) )
46 26 27 45 syl2anc ( 𝜑𝑅 ⊆ ( 𝑄 𝑅 ) )
47 2 lsmless2 ( ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑄 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ⊆ ( 𝑄 𝑅 ) ) → ( 𝑈 𝑅 ) ⊆ ( 𝑈 ( 𝑄 𝑅 ) ) )
48 31 44 46 47 syl3anc ( 𝜑 → ( 𝑈 𝑅 ) ⊆ ( 𝑈 ( 𝑄 𝑅 ) ) )
49 43 48 eqssd ( 𝜑 → ( 𝑈 ( 𝑄 𝑅 ) ) = ( 𝑈 𝑅 ) )
50 21 49 breqtrrd ( 𝜑𝑈 ( ⋖L𝑊 ) ( 𝑈 ( 𝑄 𝑅 ) ) )
51 1 2 11 13 5 17 50 lcvexchlem4 ( 𝜑 → ( 𝑈 ∩ ( 𝑄 𝑅 ) ) ( ⋖L𝑊 ) ( 𝑄 𝑅 ) )
52 1 2 3 11 4 19 6 7 8 51 lsatcvat2 ( 𝜑 → ( 𝑈 ∩ ( 𝑄 𝑅 ) ) ∈ 𝐴 )