Step |
Hyp |
Ref |
Expression |
1 |
|
lsatcvat3.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
lsatcvat3.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
3 |
|
lsatcvat3.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
4 |
|
lsatcvat3.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
5 |
|
lsatcvat3.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
6 |
|
lsatcvat3.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
7 |
|
lsatcvat3.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
8 |
|
lsatcvat3.n |
⊢ ( 𝜑 → 𝑄 ≠ 𝑅 ) |
9 |
|
lsatcvat3.m |
⊢ ( 𝜑 → ¬ 𝑅 ⊆ 𝑈 ) |
10 |
|
lsatcvat3.l |
⊢ ( 𝜑 → 𝑄 ⊆ ( 𝑈 ⊕ 𝑅 ) ) |
11 |
|
eqid |
⊢ ( ⋖L ‘ 𝑊 ) = ( ⋖L ‘ 𝑊 ) |
12 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
14 |
1 3 13 6
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ 𝑆 ) |
15 |
1 3 13 7
|
lsatlssel |
⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) |
16 |
1 2
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑄 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆 ) → ( 𝑄 ⊕ 𝑅 ) ∈ 𝑆 ) |
17 |
13 14 15 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ⊕ 𝑅 ) ∈ 𝑆 ) |
18 |
1
|
lssincl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ ( 𝑄 ⊕ 𝑅 ) ∈ 𝑆 ) → ( 𝑈 ∩ ( 𝑄 ⊕ 𝑅 ) ) ∈ 𝑆 ) |
19 |
13 5 17 18
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ∩ ( 𝑄 ⊕ 𝑅 ) ) ∈ 𝑆 ) |
20 |
1 2 3 11 4 5 7
|
lcv1 |
⊢ ( 𝜑 → ( ¬ 𝑅 ⊆ 𝑈 ↔ 𝑈 ( ⋖L ‘ 𝑊 ) ( 𝑈 ⊕ 𝑅 ) ) ) |
21 |
9 20
|
mpbid |
⊢ ( 𝜑 → 𝑈 ( ⋖L ‘ 𝑊 ) ( 𝑈 ⊕ 𝑅 ) ) |
22 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
23 |
13 22
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
24 |
1
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
25 |
13 24
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
26 |
25 14
|
sseldd |
⊢ ( 𝜑 → 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ) |
27 |
25 15
|
sseldd |
⊢ ( 𝜑 → 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) |
28 |
2
|
lsmcom |
⊢ ( ( 𝑊 ∈ Abel ∧ 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑄 ⊕ 𝑅 ) = ( 𝑅 ⊕ 𝑄 ) ) |
29 |
23 26 27 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ⊕ 𝑅 ) = ( 𝑅 ⊕ 𝑄 ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) = ( 𝑈 ⊕ ( 𝑅 ⊕ 𝑄 ) ) ) |
31 |
25 5
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
32 |
2
|
lsmass |
⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝑈 ⊕ 𝑅 ) ⊕ 𝑄 ) = ( 𝑈 ⊕ ( 𝑅 ⊕ 𝑄 ) ) ) |
33 |
31 27 26 32
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑈 ⊕ 𝑅 ) ⊕ 𝑄 ) = ( 𝑈 ⊕ ( 𝑅 ⊕ 𝑄 ) ) ) |
34 |
30 33
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) = ( ( 𝑈 ⊕ 𝑅 ) ⊕ 𝑄 ) ) |
35 |
1 2
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆 ) → ( 𝑈 ⊕ 𝑅 ) ∈ 𝑆 ) |
36 |
13 5 15 35
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ⊕ 𝑅 ) ∈ 𝑆 ) |
37 |
25 36
|
sseldd |
⊢ ( 𝜑 → ( 𝑈 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
38 |
2
|
lsmless2 |
⊢ ( ( ( 𝑈 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑈 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑄 ⊆ ( 𝑈 ⊕ 𝑅 ) ) → ( ( 𝑈 ⊕ 𝑅 ) ⊕ 𝑄 ) ⊆ ( ( 𝑈 ⊕ 𝑅 ) ⊕ ( 𝑈 ⊕ 𝑅 ) ) ) |
39 |
37 37 10 38
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑈 ⊕ 𝑅 ) ⊕ 𝑄 ) ⊆ ( ( 𝑈 ⊕ 𝑅 ) ⊕ ( 𝑈 ⊕ 𝑅 ) ) ) |
40 |
34 39
|
eqsstrd |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) ⊆ ( ( 𝑈 ⊕ 𝑅 ) ⊕ ( 𝑈 ⊕ 𝑅 ) ) ) |
41 |
2
|
lsmidm |
⊢ ( ( 𝑈 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) → ( ( 𝑈 ⊕ 𝑅 ) ⊕ ( 𝑈 ⊕ 𝑅 ) ) = ( 𝑈 ⊕ 𝑅 ) ) |
42 |
37 41
|
syl |
⊢ ( 𝜑 → ( ( 𝑈 ⊕ 𝑅 ) ⊕ ( 𝑈 ⊕ 𝑅 ) ) = ( 𝑈 ⊕ 𝑅 ) ) |
43 |
40 42
|
sseqtrd |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) ⊆ ( 𝑈 ⊕ 𝑅 ) ) |
44 |
25 17
|
sseldd |
⊢ ( 𝜑 → ( 𝑄 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
45 |
2
|
lsmub2 |
⊢ ( ( 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) → 𝑅 ⊆ ( 𝑄 ⊕ 𝑅 ) ) |
46 |
26 27 45
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ⊆ ( 𝑄 ⊕ 𝑅 ) ) |
47 |
2
|
lsmless2 |
⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑄 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ⊆ ( 𝑄 ⊕ 𝑅 ) ) → ( 𝑈 ⊕ 𝑅 ) ⊆ ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) ) |
48 |
31 44 46 47
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ⊕ 𝑅 ) ⊆ ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) ) |
49 |
43 48
|
eqssd |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) = ( 𝑈 ⊕ 𝑅 ) ) |
50 |
21 49
|
breqtrrd |
⊢ ( 𝜑 → 𝑈 ( ⋖L ‘ 𝑊 ) ( 𝑈 ⊕ ( 𝑄 ⊕ 𝑅 ) ) ) |
51 |
1 2 11 13 5 17 50
|
lcvexchlem4 |
⊢ ( 𝜑 → ( 𝑈 ∩ ( 𝑄 ⊕ 𝑅 ) ) ( ⋖L ‘ 𝑊 ) ( 𝑄 ⊕ 𝑅 ) ) |
52 |
1 2 3 11 4 19 6 7 8 51
|
lsatcvat2 |
⊢ ( 𝜑 → ( 𝑈 ∩ ( 𝑄 ⊕ 𝑅 ) ) ∈ 𝐴 ) |