Step |
Hyp |
Ref |
Expression |
1 |
|
lsatcvat3.s |
|
2 |
|
lsatcvat3.p |
|
3 |
|
lsatcvat3.a |
|
4 |
|
lsatcvat3.w |
|
5 |
|
lsatcvat3.u |
|
6 |
|
lsatcvat3.q |
|
7 |
|
lsatcvat3.r |
|
8 |
|
lsatcvat3.n |
|
9 |
|
lsatcvat3.m |
|
10 |
|
lsatcvat3.l |
|
11 |
|
eqid |
|
12 |
|
lveclmod |
|
13 |
4 12
|
syl |
|
14 |
1 3 13 6
|
lsatlssel |
|
15 |
1 3 13 7
|
lsatlssel |
|
16 |
1 2
|
lsmcl |
|
17 |
13 14 15 16
|
syl3anc |
|
18 |
1
|
lssincl |
|
19 |
13 5 17 18
|
syl3anc |
|
20 |
1 2 3 11 4 5 7
|
lcv1 |
|
21 |
9 20
|
mpbid |
|
22 |
|
lmodabl |
|
23 |
13 22
|
syl |
|
24 |
1
|
lsssssubg |
|
25 |
13 24
|
syl |
|
26 |
25 14
|
sseldd |
|
27 |
25 15
|
sseldd |
|
28 |
2
|
lsmcom |
|
29 |
23 26 27 28
|
syl3anc |
|
30 |
29
|
oveq2d |
|
31 |
25 5
|
sseldd |
|
32 |
2
|
lsmass |
|
33 |
31 27 26 32
|
syl3anc |
|
34 |
30 33
|
eqtr4d |
|
35 |
1 2
|
lsmcl |
|
36 |
13 5 15 35
|
syl3anc |
|
37 |
25 36
|
sseldd |
|
38 |
2
|
lsmless2 |
|
39 |
37 37 10 38
|
syl3anc |
|
40 |
34 39
|
eqsstrd |
|
41 |
2
|
lsmidm |
|
42 |
37 41
|
syl |
|
43 |
40 42
|
sseqtrd |
|
44 |
25 17
|
sseldd |
|
45 |
2
|
lsmub2 |
|
46 |
26 27 45
|
syl2anc |
|
47 |
2
|
lsmless2 |
|
48 |
31 44 46 47
|
syl3anc |
|
49 |
43 48
|
eqssd |
|
50 |
21 49
|
breqtrrd |
|
51 |
1 2 11 13 5 17 50
|
lcvexchlem4 |
|
52 |
1 2 3 11 4 19 6 7 8 51
|
lsatcvat2 |
|