Metamath Proof Explorer


Theorem atcvat3i

Description: A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of PtakPulmannova p. 68. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypothesis atcvat3.1 A C
Assertion atcvat3i B HAtoms C HAtoms ¬ B = C ¬ C A B A C A B C HAtoms

Proof

Step Hyp Ref Expression
1 atcvat3.1 A C
2 chcv1 A C C HAtoms ¬ C A A A C
3 1 2 mpan C HAtoms ¬ C A A A C
4 3 biimpa C HAtoms ¬ C A A A C
5 4 ad2ant2lr B HAtoms C HAtoms ¬ C A B A C A A C
6 atelch B HAtoms B C
7 atelch C HAtoms C C
8 6 7 anim12i B HAtoms C HAtoms B C C C
9 chjcom B C C C B C = C B
10 9 oveq2d B C C C A B C = A C B
11 chjass A C C C B C A C B = A C B
12 1 11 mp3an1 C C B C A C B = A C B
13 12 ancoms B C C C A C B = A C B
14 10 13 eqtr4d B C C C A B C = A C B
15 14 adantr B C C C B A C A B C = A C B
16 simpl B C C C B C
17 chjcl A C C C A C C
18 1 17 mpan C C A C C
19 18 adantl B C C C A C C
20 chlej2 B C A C C A C C B A C A C B A C A C
21 20 ex B C A C C A C C B A C A C B A C A C
22 16 19 19 21 syl3anc B C C C B A C A C B A C A C
23 22 imp B C C C B A C A C B A C A C
24 15 23 eqsstrd B C C C B A C A B C A C A C
25 chjidm A C C A C A C = A C
26 18 25 syl C C A C A C = A C
27 26 ad2antlr B C C C B A C A C A C = A C
28 24 27 sseqtrd B C C C B A C A B C A C
29 simpr B C C C C C
30 chjcl B C C C B C C
31 chub2 C C B C C B C
32 31 ancoms B C C C C B C
33 chlej2 C C B C C A C C B C A C A B C
34 1 33 mp3anl3 C C B C C C B C A C A B C
35 29 30 32 34 syl21anc B C C C A C A B C
36 35 adantr B C C C B A C A C A B C
37 28 36 eqssd B C C C B A C A B C = A C
38 8 37 sylan B HAtoms C HAtoms B A C A B C = A C
39 38 breq2d B HAtoms C HAtoms B A C A A B C A A C
40 39 adantrl B HAtoms C HAtoms ¬ C A B A C A A B C A A C
41 5 40 mpbird B HAtoms C HAtoms ¬ C A B A C A A B C
42 41 ex B HAtoms C HAtoms ¬ C A B A C A A B C
43 30 1 jctil B C C C A C B C C
44 6 7 43 syl2an B HAtoms C HAtoms A C B C C
45 cvexch A C B C C A B C B C A A B C
46 44 45 syl B HAtoms C HAtoms A B C B C A A B C
47 42 46 sylibrd B HAtoms C HAtoms ¬ C A B A C A B C B C
48 47 adantr B HAtoms C HAtoms ¬ B = C ¬ C A B A C A B C B C
49 chincl A C B C C A B C C
50 1 30 49 sylancr B C C C A B C C
51 6 7 50 syl2an B HAtoms C HAtoms A B C C
52 simpl B HAtoms C HAtoms B HAtoms
53 simpr B HAtoms C HAtoms C HAtoms
54 atcvat2 A B C C B HAtoms C HAtoms ¬ B = C A B C B C A B C HAtoms
55 51 52 53 54 syl3anc B HAtoms C HAtoms ¬ B = C A B C B C A B C HAtoms
56 55 expdimp B HAtoms C HAtoms ¬ B = C A B C B C A B C HAtoms
57 48 56 syld B HAtoms C HAtoms ¬ B = C ¬ C A B A C A B C HAtoms
58 57 exp4b B HAtoms C HAtoms ¬ B = C ¬ C A B A C A B C HAtoms
59 58 imp4c B HAtoms C HAtoms ¬ B = C ¬ C A B A C A B C HAtoms