Metamath Proof Explorer


Theorem lsatcvat2

Description: A subspace covered by the sum of two distinct atoms is an atom. ( atcvat2i analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatcvat2.s S=LSubSpW
lsatcvat2.p ˙=LSSumW
lsatcvat2.a A=LSAtomsW
lsatcvat2.c C=LW
lsatcvat2.w φWLVec
lsatcvat2.u φUS
lsatcvat2.q φQA
lsatcvat2.r φRA
lsatcvat2.n φQR
lsatcvat2.l φUCQ˙R
Assertion lsatcvat2 φUA

Proof

Step Hyp Ref Expression
1 lsatcvat2.s S=LSubSpW
2 lsatcvat2.p ˙=LSSumW
3 lsatcvat2.a A=LSAtomsW
4 lsatcvat2.c C=LW
5 lsatcvat2.w φWLVec
6 lsatcvat2.u φUS
7 lsatcvat2.q φQA
8 lsatcvat2.r φRA
9 lsatcvat2.n φQR
10 lsatcvat2.l φUCQ˙R
11 eqid 0W=0W
12 11 2 1 3 4 5 6 7 8 10 lsatcv1 φU=0WQ=R
13 12 necon3bid φU0WQR
14 9 13 mpbird φU0W
15 lveclmod WLVecWLMod
16 5 15 syl φWLMod
17 1 3 16 7 lsatlssel φQS
18 1 3 16 8 lsatlssel φRS
19 1 2 lsmcl WLModQSRSQ˙RS
20 16 17 18 19 syl3anc φQ˙RS
21 1 4 5 6 20 10 lcvpss φUQ˙R
22 11 1 2 3 5 6 7 8 14 21 lsatcvat φUA