Metamath Proof Explorer


Theorem lsatcvat2

Description: A subspace covered by the sum of two distinct atoms is an atom. ( atcvat2i analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatcvat2.s S = LSubSp W
lsatcvat2.p ˙ = LSSum W
lsatcvat2.a A = LSAtoms W
lsatcvat2.c C = L W
lsatcvat2.w φ W LVec
lsatcvat2.u φ U S
lsatcvat2.q φ Q A
lsatcvat2.r φ R A
lsatcvat2.n φ Q R
lsatcvat2.l φ U C Q ˙ R
Assertion lsatcvat2 φ U A

Proof

Step Hyp Ref Expression
1 lsatcvat2.s S = LSubSp W
2 lsatcvat2.p ˙ = LSSum W
3 lsatcvat2.a A = LSAtoms W
4 lsatcvat2.c C = L W
5 lsatcvat2.w φ W LVec
6 lsatcvat2.u φ U S
7 lsatcvat2.q φ Q A
8 lsatcvat2.r φ R A
9 lsatcvat2.n φ Q R
10 lsatcvat2.l φ U C Q ˙ R
11 eqid 0 W = 0 W
12 11 2 1 3 4 5 6 7 8 10 lsatcv1 φ U = 0 W Q = R
13 12 necon3bid φ U 0 W Q R
14 9 13 mpbird φ U 0 W
15 lveclmod W LVec W LMod
16 5 15 syl φ W LMod
17 1 3 16 7 lsatlssel φ Q S
18 1 3 16 8 lsatlssel φ R S
19 1 2 lsmcl W LMod Q S R S Q ˙ R S
20 16 17 18 19 syl3anc φ Q ˙ R S
21 1 4 5 6 20 10 lcvpss φ U Q ˙ R
22 11 1 2 3 5 6 7 8 14 21 lsatcvat φ U A