Metamath Proof Explorer


Theorem lsatcvat2

Description: A subspace covered by the sum of two distinct atoms is an atom. ( atcvat2i analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatcvat2.s
|- S = ( LSubSp ` W )
lsatcvat2.p
|- .(+) = ( LSSum ` W )
lsatcvat2.a
|- A = ( LSAtoms ` W )
lsatcvat2.c
|- C = ( 
    lsatcvat2.w
    |- ( ph -> W e. LVec )
    lsatcvat2.u
    |- ( ph -> U e. S )
    lsatcvat2.q
    |- ( ph -> Q e. A )
    lsatcvat2.r
    |- ( ph -> R e. A )
    lsatcvat2.n
    |- ( ph -> Q =/= R )
    lsatcvat2.l
    |- ( ph -> U C ( Q .(+) R ) )
    Assertion lsatcvat2
    |- ( ph -> U e. A )

    Proof

    Step Hyp Ref Expression
    1 lsatcvat2.s
     |-  S = ( LSubSp ` W )
    2 lsatcvat2.p
     |-  .(+) = ( LSSum ` W )
    3 lsatcvat2.a
     |-  A = ( LSAtoms ` W )
    4 lsatcvat2.c
     |-  C = ( 
      5 lsatcvat2.w
       |-  ( ph -> W e. LVec )
      6 lsatcvat2.u
       |-  ( ph -> U e. S )
      7 lsatcvat2.q
       |-  ( ph -> Q e. A )
      8 lsatcvat2.r
       |-  ( ph -> R e. A )
      9 lsatcvat2.n
       |-  ( ph -> Q =/= R )
      10 lsatcvat2.l
       |-  ( ph -> U C ( Q .(+) R ) )
      11 eqid
       |-  ( 0g ` W ) = ( 0g ` W )
      12 11 2 1 3 4 5 6 7 8 10 lsatcv1
       |-  ( ph -> ( U = { ( 0g ` W ) } <-> Q = R ) )
      13 12 necon3bid
       |-  ( ph -> ( U =/= { ( 0g ` W ) } <-> Q =/= R ) )
      14 9 13 mpbird
       |-  ( ph -> U =/= { ( 0g ` W ) } )
      15 lveclmod
       |-  ( W e. LVec -> W e. LMod )
      16 5 15 syl
       |-  ( ph -> W e. LMod )
      17 1 3 16 7 lsatlssel
       |-  ( ph -> Q e. S )
      18 1 3 16 8 lsatlssel
       |-  ( ph -> R e. S )
      19 1 2 lsmcl
       |-  ( ( W e. LMod /\ Q e. S /\ R e. S ) -> ( Q .(+) R ) e. S )
      20 16 17 18 19 syl3anc
       |-  ( ph -> ( Q .(+) R ) e. S )
      21 1 4 5 6 20 10 lcvpss
       |-  ( ph -> U C. ( Q .(+) R ) )
      22 11 1 2 3 5 6 7 8 14 21 lsatcvat
       |-  ( ph -> U e. A )