Metamath Proof Explorer


Theorem lsatcvat2

Description: A subspace covered by the sum of two distinct atoms is an atom. ( atcvat2i analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatcvat2.s 𝑆 = ( LSubSp ‘ 𝑊 )
lsatcvat2.p = ( LSSum ‘ 𝑊 )
lsatcvat2.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lsatcvat2.c 𝐶 = ( ⋖L𝑊 )
lsatcvat2.w ( 𝜑𝑊 ∈ LVec )
lsatcvat2.u ( 𝜑𝑈𝑆 )
lsatcvat2.q ( 𝜑𝑄𝐴 )
lsatcvat2.r ( 𝜑𝑅𝐴 )
lsatcvat2.n ( 𝜑𝑄𝑅 )
lsatcvat2.l ( 𝜑𝑈 𝐶 ( 𝑄 𝑅 ) )
Assertion lsatcvat2 ( 𝜑𝑈𝐴 )

Proof

Step Hyp Ref Expression
1 lsatcvat2.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lsatcvat2.p = ( LSSum ‘ 𝑊 )
3 lsatcvat2.a 𝐴 = ( LSAtoms ‘ 𝑊 )
4 lsatcvat2.c 𝐶 = ( ⋖L𝑊 )
5 lsatcvat2.w ( 𝜑𝑊 ∈ LVec )
6 lsatcvat2.u ( 𝜑𝑈𝑆 )
7 lsatcvat2.q ( 𝜑𝑄𝐴 )
8 lsatcvat2.r ( 𝜑𝑅𝐴 )
9 lsatcvat2.n ( 𝜑𝑄𝑅 )
10 lsatcvat2.l ( 𝜑𝑈 𝐶 ( 𝑄 𝑅 ) )
11 eqid ( 0g𝑊 ) = ( 0g𝑊 )
12 11 2 1 3 4 5 6 7 8 10 lsatcv1 ( 𝜑 → ( 𝑈 = { ( 0g𝑊 ) } ↔ 𝑄 = 𝑅 ) )
13 12 necon3bid ( 𝜑 → ( 𝑈 ≠ { ( 0g𝑊 ) } ↔ 𝑄𝑅 ) )
14 9 13 mpbird ( 𝜑𝑈 ≠ { ( 0g𝑊 ) } )
15 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
16 5 15 syl ( 𝜑𝑊 ∈ LMod )
17 1 3 16 7 lsatlssel ( 𝜑𝑄𝑆 )
18 1 3 16 8 lsatlssel ( 𝜑𝑅𝑆 )
19 1 2 lsmcl ( ( 𝑊 ∈ LMod ∧ 𝑄𝑆𝑅𝑆 ) → ( 𝑄 𝑅 ) ∈ 𝑆 )
20 16 17 18 19 syl3anc ( 𝜑 → ( 𝑄 𝑅 ) ∈ 𝑆 )
21 1 4 5 6 20 10 lcvpss ( 𝜑𝑈 ⊊ ( 𝑄 𝑅 ) )
22 11 1 2 3 5 6 7 8 14 21 lsatcvat ( 𝜑𝑈𝐴 )