| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatcvat.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 2 |
|
lsatcvat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
lsatcvat.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 4 |
|
lsatcvat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 5 |
|
lsatcvat.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 6 |
|
lsatcvat.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 7 |
|
lsatcvat.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 8 |
|
lsatcvat.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
| 9 |
|
lsatcvat.n |
⊢ ( 𝜑 → 𝑈 ≠ { 0 } ) |
| 10 |
|
lsatcvat.l |
⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑄 ⊕ 𝑅 ) ) |
| 11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) → 𝑊 ∈ LVec ) |
| 12 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) → 𝑄 ∈ 𝐴 ) |
| 14 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) → 𝑅 ∈ 𝐴 ) |
| 15 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) → 𝑈 ≠ { 0 } ) |
| 16 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) → 𝑈 ⊊ ( 𝑄 ⊕ 𝑅 ) ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) → ¬ 𝑄 ⊆ 𝑈 ) |
| 18 |
1 2 3 4 11 12 13 14 15 16 17
|
lsatcvatlem |
⊢ ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) → 𝑈 ∈ 𝐴 ) |
| 19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ⊆ 𝑈 ) → 𝑊 ∈ LVec ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ⊆ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 21 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ⊆ 𝑈 ) → 𝑅 ∈ 𝐴 ) |
| 22 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ⊆ 𝑈 ) → 𝑄 ∈ 𝐴 ) |
| 23 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ⊆ 𝑈 ) → 𝑈 ≠ { 0 } ) |
| 24 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 25 |
5 24
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 26 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
| 28 |
2
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 29 |
25 28
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 30 |
2 4 25 7
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ 𝑆 ) |
| 31 |
29 30
|
sseldd |
⊢ ( 𝜑 → 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 32 |
2 4 25 8
|
lsatlssel |
⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) |
| 33 |
29 32
|
sseldd |
⊢ ( 𝜑 → 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 34 |
3
|
lsmcom |
⊢ ( ( 𝑊 ∈ Abel ∧ 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑄 ⊕ 𝑅 ) = ( 𝑅 ⊕ 𝑄 ) ) |
| 35 |
27 31 33 34
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ⊕ 𝑅 ) = ( 𝑅 ⊕ 𝑄 ) ) |
| 36 |
35
|
psseq2d |
⊢ ( 𝜑 → ( 𝑈 ⊊ ( 𝑄 ⊕ 𝑅 ) ↔ 𝑈 ⊊ ( 𝑅 ⊕ 𝑄 ) ) ) |
| 37 |
10 36
|
mpbid |
⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑅 ⊕ 𝑄 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ⊆ 𝑈 ) → 𝑈 ⊊ ( 𝑅 ⊕ 𝑄 ) ) |
| 39 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ⊆ 𝑈 ) → ¬ 𝑅 ⊆ 𝑈 ) |
| 40 |
1 2 3 4 19 20 21 22 23 38 39
|
lsatcvatlem |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ⊆ 𝑈 ) → 𝑈 ∈ 𝐴 ) |
| 41 |
29 6
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 42 |
3
|
lsmlub |
⊢ ( ( 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈 ) ↔ ( 𝑄 ⊕ 𝑅 ) ⊆ 𝑈 ) ) |
| 43 |
31 33 41 42
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈 ) ↔ ( 𝑄 ⊕ 𝑅 ) ⊆ 𝑈 ) ) |
| 44 |
|
ssnpss |
⊢ ( ( 𝑄 ⊕ 𝑅 ) ⊆ 𝑈 → ¬ 𝑈 ⊊ ( 𝑄 ⊕ 𝑅 ) ) |
| 45 |
43 44
|
biimtrdi |
⊢ ( 𝜑 → ( ( 𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈 ) → ¬ 𝑈 ⊊ ( 𝑄 ⊕ 𝑅 ) ) ) |
| 46 |
45
|
con2d |
⊢ ( 𝜑 → ( 𝑈 ⊊ ( 𝑄 ⊕ 𝑅 ) → ¬ ( 𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈 ) ) ) |
| 47 |
|
ianor |
⊢ ( ¬ ( 𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈 ) ↔ ( ¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈 ) ) |
| 48 |
46 47
|
imbitrdi |
⊢ ( 𝜑 → ( 𝑈 ⊊ ( 𝑄 ⊕ 𝑅 ) → ( ¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈 ) ) ) |
| 49 |
10 48
|
mpd |
⊢ ( 𝜑 → ( ¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈 ) ) |
| 50 |
18 40 49
|
mpjaodan |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |