Metamath Proof Explorer


Theorem islshpcv

Description: Hyperplane properties expressed with covers relation. (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses islshpcv.v V=BaseW
islshpcv.s S=LSubSpW
islshpcv.h H=LSHypW
islshpcv.c C=LW
islshpcv.w φWLVec
Assertion islshpcv φUHUSUCV

Proof

Step Hyp Ref Expression
1 islshpcv.v V=BaseW
2 islshpcv.s S=LSubSpW
3 islshpcv.h H=LSHypW
4 islshpcv.c C=LW
5 islshpcv.w φWLVec
6 eqid LSSumW=LSSumW
7 eqid LSAtomsW=LSAtomsW
8 lveclmod WLVecWLMod
9 5 8 syl φWLMod
10 1 2 6 3 7 9 islshpat φUHUSUVqLSAtomsWULSSumWq=V
11 simp12 φUSUVqLSAtomsWULSSumWq=VUS
12 1 2 lssss USUV
13 11 12 syl φUSUVqLSAtomsWULSSumWq=VUV
14 simp13 φUSUVqLSAtomsWULSSumWq=VUV
15 df-pss UVUVUV
16 13 14 15 sylanbrc φUSUVqLSAtomsWULSSumWq=VUV
17 psseq2 ULSSumWq=VUULSSumWqUV
18 17 3ad2ant3 φUSUVqLSAtomsWULSSumWq=VUULSSumWqUV
19 16 18 mpbird φUSUVqLSAtomsWULSSumWq=VUULSSumWq
20 5 3ad2ant1 φUSUVWLVec
21 20 3ad2ant1 φUSUVqLSAtomsWULSSumWq=VWLVec
22 simp2 φUSUVqLSAtomsWULSSumWq=VqLSAtomsW
23 2 6 7 4 21 11 22 lcv2 φUSUVqLSAtomsWULSSumWq=VUULSSumWqUCULSSumWq
24 19 23 mpbid φUSUVqLSAtomsWULSSumWq=VUCULSSumWq
25 simp3 φUSUVqLSAtomsWULSSumWq=VULSSumWq=V
26 24 25 breqtrd φUSUVqLSAtomsWULSSumWq=VUCV
27 11 26 jca φUSUVqLSAtomsWULSSumWq=VUSUCV
28 27 rexlimdv3a φUSUVqLSAtomsWULSSumWq=VUSUCV
29 28 3exp φUSUVqLSAtomsWULSSumWq=VUSUCV
30 29 3impd φUSUVqLSAtomsWULSSumWq=VUSUCV
31 simprl φUSUCVUS
32 5 adantr φUSUCVWLVec
33 9 adantr φUSUCVWLMod
34 1 2 lss1 WLModVS
35 33 34 syl φUSUCVVS
36 simprr φUSUCVUCV
37 2 4 32 31 35 36 lcvpss φUSUCVUV
38 37 pssned φUSUCVUV
39 2 6 7 4 33 31 35 36 lcvat φUSUCVqLSAtomsWULSSumWq=V
40 31 38 39 3jca φUSUCVUSUVqLSAtomsWULSSumWq=V
41 40 ex φUSUCVUSUVqLSAtomsWULSSumWq=V
42 30 41 impbid φUSUVqLSAtomsWULSSumWq=VUSUCV
43 10 42 bitrd φUHUSUCV