Metamath Proof Explorer


Theorem islshpcv

Description: Hyperplane properties expressed with covers relation. (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses islshpcv.v V = Base W
islshpcv.s S = LSubSp W
islshpcv.h H = LSHyp W
islshpcv.c C = L W
islshpcv.w φ W LVec
Assertion islshpcv φ U H U S U C V

Proof

Step Hyp Ref Expression
1 islshpcv.v V = Base W
2 islshpcv.s S = LSubSp W
3 islshpcv.h H = LSHyp W
4 islshpcv.c C = L W
5 islshpcv.w φ W LVec
6 eqid LSSum W = LSSum W
7 eqid LSAtoms W = LSAtoms W
8 lveclmod W LVec W LMod
9 5 8 syl φ W LMod
10 1 2 6 3 7 9 islshpat φ U H U S U V q LSAtoms W U LSSum W q = V
11 simp12 φ U S U V q LSAtoms W U LSSum W q = V U S
12 1 2 lssss U S U V
13 11 12 syl φ U S U V q LSAtoms W U LSSum W q = V U V
14 simp13 φ U S U V q LSAtoms W U LSSum W q = V U V
15 df-pss U V U V U V
16 13 14 15 sylanbrc φ U S U V q LSAtoms W U LSSum W q = V U V
17 psseq2 U LSSum W q = V U U LSSum W q U V
18 17 3ad2ant3 φ U S U V q LSAtoms W U LSSum W q = V U U LSSum W q U V
19 16 18 mpbird φ U S U V q LSAtoms W U LSSum W q = V U U LSSum W q
20 5 3ad2ant1 φ U S U V W LVec
21 20 3ad2ant1 φ U S U V q LSAtoms W U LSSum W q = V W LVec
22 simp2 φ U S U V q LSAtoms W U LSSum W q = V q LSAtoms W
23 2 6 7 4 21 11 22 lcv2 φ U S U V q LSAtoms W U LSSum W q = V U U LSSum W q U C U LSSum W q
24 19 23 mpbid φ U S U V q LSAtoms W U LSSum W q = V U C U LSSum W q
25 simp3 φ U S U V q LSAtoms W U LSSum W q = V U LSSum W q = V
26 24 25 breqtrd φ U S U V q LSAtoms W U LSSum W q = V U C V
27 11 26 jca φ U S U V q LSAtoms W U LSSum W q = V U S U C V
28 27 rexlimdv3a φ U S U V q LSAtoms W U LSSum W q = V U S U C V
29 28 3exp φ U S U V q LSAtoms W U LSSum W q = V U S U C V
30 29 3impd φ U S U V q LSAtoms W U LSSum W q = V U S U C V
31 simprl φ U S U C V U S
32 5 adantr φ U S U C V W LVec
33 9 adantr φ U S U C V W LMod
34 1 2 lss1 W LMod V S
35 33 34 syl φ U S U C V V S
36 simprr φ U S U C V U C V
37 2 4 32 31 35 36 lcvpss φ U S U C V U V
38 37 pssned φ U S U C V U V
39 2 6 7 4 33 31 35 36 lcvat φ U S U C V q LSAtoms W U LSSum W q = V
40 31 38 39 3jca φ U S U C V U S U V q LSAtoms W U LSSum W q = V
41 40 ex φ U S U C V U S U V q LSAtoms W U LSSum W q = V
42 30 41 impbid φ U S U V q LSAtoms W U LSSum W q = V U S U C V
43 10 42 bitrd φ U H U S U C V