Metamath Proof Explorer


Theorem l1cvpat

Description: A subspace covered by the set of all vectors, when summed with an atom not under it, equals the set of all vectors. ( 1cvrjat analog.) (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses l1cvpat.v V = Base W
l1cvpat.s S = LSubSp W
l1cvpat.p ˙ = LSSum W
l1cvpat.a A = LSAtoms W
l1cvpat.c C = L W
l1cvpat.w φ W LVec
l1cvpat.u φ U S
l1cvpat.q φ Q A
l1cvpat.l φ U C V
l1cvpat.m φ ¬ Q U
Assertion l1cvpat φ U ˙ Q = V

Proof

Step Hyp Ref Expression
1 l1cvpat.v V = Base W
2 l1cvpat.s S = LSubSp W
3 l1cvpat.p ˙ = LSSum W
4 l1cvpat.a A = LSAtoms W
5 l1cvpat.c C = L W
6 l1cvpat.w φ W LVec
7 l1cvpat.u φ U S
8 l1cvpat.q φ Q A
9 l1cvpat.l φ U C V
10 l1cvpat.m φ ¬ Q U
11 eqid LSpan W = LSpan W
12 eqid 0 W = 0 W
13 1 11 12 4 islsat W LVec Q A v V 0 W Q = LSpan W v
14 6 13 syl φ Q A v V 0 W Q = LSpan W v
15 8 14 mpbid φ v V 0 W Q = LSpan W v
16 eldifi v V 0 W v V
17 lveclmod W LVec W LMod
18 6 17 syl φ W LMod
19 18 3ad2ant1 φ v V Q = LSpan W v W LMod
20 7 3ad2ant1 φ v V Q = LSpan W v U S
21 simp2 φ v V Q = LSpan W v v V
22 1 2 11 19 20 21 lspsnel5 φ v V Q = LSpan W v v U LSpan W v U
23 22 notbid φ v V Q = LSpan W v ¬ v U ¬ LSpan W v U
24 eqid LSHyp W = LSHyp W
25 6 3ad2ant1 φ v V Q = LSpan W v W LVec
26 1 2 24 5 6 islshpcv φ U LSHyp W U S U C V
27 7 9 26 mpbir2and φ U LSHyp W
28 27 3ad2ant1 φ v V Q = LSpan W v U LSHyp W
29 1 11 3 24 25 28 21 lshpnelb φ v V Q = LSpan W v ¬ v U U ˙ LSpan W v = V
30 29 biimpd φ v V Q = LSpan W v ¬ v U U ˙ LSpan W v = V
31 23 30 sylbird φ v V Q = LSpan W v ¬ LSpan W v U U ˙ LSpan W v = V
32 sseq1 Q = LSpan W v Q U LSpan W v U
33 32 notbid Q = LSpan W v ¬ Q U ¬ LSpan W v U
34 oveq2 Q = LSpan W v U ˙ Q = U ˙ LSpan W v
35 34 eqeq1d Q = LSpan W v U ˙ Q = V U ˙ LSpan W v = V
36 33 35 imbi12d Q = LSpan W v ¬ Q U U ˙ Q = V ¬ LSpan W v U U ˙ LSpan W v = V
37 36 3ad2ant3 φ v V Q = LSpan W v ¬ Q U U ˙ Q = V ¬ LSpan W v U U ˙ LSpan W v = V
38 31 37 mpbird φ v V Q = LSpan W v ¬ Q U U ˙ Q = V
39 38 3exp φ v V Q = LSpan W v ¬ Q U U ˙ Q = V
40 16 39 syl5 φ v V 0 W Q = LSpan W v ¬ Q U U ˙ Q = V
41 40 rexlimdv φ v V 0 W Q = LSpan W v ¬ Q U U ˙ Q = V
42 15 10 41 mp2d φ U ˙ Q = V