Step |
Hyp |
Ref |
Expression |
1 |
|
l1cvpat.v |
|- V = ( Base ` W ) |
2 |
|
l1cvpat.s |
|- S = ( LSubSp ` W ) |
3 |
|
l1cvpat.p |
|- .(+) = ( LSSum ` W ) |
4 |
|
l1cvpat.a |
|- A = ( LSAtoms ` W ) |
5 |
|
l1cvpat.c |
|- C = (
|
6 |
|
l1cvpat.w |
|- ( ph -> W e. LVec ) |
7 |
|
l1cvpat.u |
|- ( ph -> U e. S ) |
8 |
|
l1cvpat.q |
|- ( ph -> Q e. A ) |
9 |
|
l1cvpat.l |
|- ( ph -> U C V ) |
10 |
|
l1cvpat.m |
|- ( ph -> -. Q C_ U ) |
11 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
12 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
13 |
1 11 12 4
|
islsat |
|- ( W e. LVec -> ( Q e. A <-> E. v e. ( V \ { ( 0g ` W ) } ) Q = ( ( LSpan ` W ) ` { v } ) ) ) |
14 |
6 13
|
syl |
|- ( ph -> ( Q e. A <-> E. v e. ( V \ { ( 0g ` W ) } ) Q = ( ( LSpan ` W ) ` { v } ) ) ) |
15 |
8 14
|
mpbid |
|- ( ph -> E. v e. ( V \ { ( 0g ` W ) } ) Q = ( ( LSpan ` W ) ` { v } ) ) |
16 |
|
eldifi |
|- ( v e. ( V \ { ( 0g ` W ) } ) -> v e. V ) |
17 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
18 |
6 17
|
syl |
|- ( ph -> W e. LMod ) |
19 |
18
|
3ad2ant1 |
|- ( ( ph /\ v e. V /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> W e. LMod ) |
20 |
7
|
3ad2ant1 |
|- ( ( ph /\ v e. V /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> U e. S ) |
21 |
|
simp2 |
|- ( ( ph /\ v e. V /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> v e. V ) |
22 |
1 2 11 19 20 21
|
lspsnel5 |
|- ( ( ph /\ v e. V /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> ( v e. U <-> ( ( LSpan ` W ) ` { v } ) C_ U ) ) |
23 |
22
|
notbid |
|- ( ( ph /\ v e. V /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> ( -. v e. U <-> -. ( ( LSpan ` W ) ` { v } ) C_ U ) ) |
24 |
|
eqid |
|- ( LSHyp ` W ) = ( LSHyp ` W ) |
25 |
6
|
3ad2ant1 |
|- ( ( ph /\ v e. V /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> W e. LVec ) |
26 |
1 2 24 5 6
|
islshpcv |
|- ( ph -> ( U e. ( LSHyp ` W ) <-> ( U e. S /\ U C V ) ) ) |
27 |
7 9 26
|
mpbir2and |
|- ( ph -> U e. ( LSHyp ` W ) ) |
28 |
27
|
3ad2ant1 |
|- ( ( ph /\ v e. V /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> U e. ( LSHyp ` W ) ) |
29 |
1 11 3 24 25 28 21
|
lshpnelb |
|- ( ( ph /\ v e. V /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> ( -. v e. U <-> ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) |
30 |
29
|
biimpd |
|- ( ( ph /\ v e. V /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> ( -. v e. U -> ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) |
31 |
23 30
|
sylbird |
|- ( ( ph /\ v e. V /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> ( -. ( ( LSpan ` W ) ` { v } ) C_ U -> ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) |
32 |
|
sseq1 |
|- ( Q = ( ( LSpan ` W ) ` { v } ) -> ( Q C_ U <-> ( ( LSpan ` W ) ` { v } ) C_ U ) ) |
33 |
32
|
notbid |
|- ( Q = ( ( LSpan ` W ) ` { v } ) -> ( -. Q C_ U <-> -. ( ( LSpan ` W ) ` { v } ) C_ U ) ) |
34 |
|
oveq2 |
|- ( Q = ( ( LSpan ` W ) ` { v } ) -> ( U .(+) Q ) = ( U .(+) ( ( LSpan ` W ) ` { v } ) ) ) |
35 |
34
|
eqeq1d |
|- ( Q = ( ( LSpan ` W ) ` { v } ) -> ( ( U .(+) Q ) = V <-> ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) |
36 |
33 35
|
imbi12d |
|- ( Q = ( ( LSpan ` W ) ` { v } ) -> ( ( -. Q C_ U -> ( U .(+) Q ) = V ) <-> ( -. ( ( LSpan ` W ) ` { v } ) C_ U -> ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
37 |
36
|
3ad2ant3 |
|- ( ( ph /\ v e. V /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> ( ( -. Q C_ U -> ( U .(+) Q ) = V ) <-> ( -. ( ( LSpan ` W ) ` { v } ) C_ U -> ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
38 |
31 37
|
mpbird |
|- ( ( ph /\ v e. V /\ Q = ( ( LSpan ` W ) ` { v } ) ) -> ( -. Q C_ U -> ( U .(+) Q ) = V ) ) |
39 |
38
|
3exp |
|- ( ph -> ( v e. V -> ( Q = ( ( LSpan ` W ) ` { v } ) -> ( -. Q C_ U -> ( U .(+) Q ) = V ) ) ) ) |
40 |
16 39
|
syl5 |
|- ( ph -> ( v e. ( V \ { ( 0g ` W ) } ) -> ( Q = ( ( LSpan ` W ) ` { v } ) -> ( -. Q C_ U -> ( U .(+) Q ) = V ) ) ) ) |
41 |
40
|
rexlimdv |
|- ( ph -> ( E. v e. ( V \ { ( 0g ` W ) } ) Q = ( ( LSpan ` W ) ` { v } ) -> ( -. Q C_ U -> ( U .(+) Q ) = V ) ) ) |
42 |
15 10 41
|
mp2d |
|- ( ph -> ( U .(+) Q ) = V ) |