Step |
Hyp |
Ref |
Expression |
1 |
|
1cvrjat.b |
|- B = ( Base ` K ) |
2 |
|
1cvrjat.l |
|- .<_ = ( le ` K ) |
3 |
|
1cvrjat.j |
|- .\/ = ( join ` K ) |
4 |
|
1cvrjat.u |
|- .1. = ( 1. ` K ) |
5 |
|
1cvrjat.c |
|- C = ( |
6 |
|
1cvrjat.a |
|- A = ( Atoms ` K ) |
7 |
|
simprr |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> -. P .<_ X ) |
8 |
1 2 3 5 6
|
cvr1 |
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> ( -. P .<_ X <-> X C ( X .\/ P ) ) ) |
9 |
8
|
adantr |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( -. P .<_ X <-> X C ( X .\/ P ) ) ) |
10 |
7 9
|
mpbid |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> X C ( X .\/ P ) ) |
11 |
|
simpl1 |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> K e. HL ) |
12 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
13 |
11 12
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> K e. OP ) |
14 |
|
simpl2 |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> X e. B ) |
15 |
11
|
hllatd |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> K e. Lat ) |
16 |
|
simpl3 |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> P e. A ) |
17 |
1 6
|
atbase |
|- ( P e. A -> P e. B ) |
18 |
16 17
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> P e. B ) |
19 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ X e. B /\ P e. B ) -> ( X .\/ P ) e. B ) |
20 |
15 14 18 19
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( X .\/ P ) e. B ) |
21 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
22 |
1 21 5
|
cvrcon3b |
|- ( ( K e. OP /\ X e. B /\ ( X .\/ P ) e. B ) -> ( X C ( X .\/ P ) <-> ( ( oc ` K ) ` ( X .\/ P ) ) C ( ( oc ` K ) ` X ) ) ) |
23 |
13 14 20 22
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( X C ( X .\/ P ) <-> ( ( oc ` K ) ` ( X .\/ P ) ) C ( ( oc ` K ) ` X ) ) ) |
24 |
10 23
|
mpbid |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( ( oc ` K ) ` ( X .\/ P ) ) C ( ( oc ` K ) ` X ) ) |
25 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
26 |
11 25
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> K e. AtLat ) |
27 |
1 21
|
opoccl |
|- ( ( K e. OP /\ ( X .\/ P ) e. B ) -> ( ( oc ` K ) ` ( X .\/ P ) ) e. B ) |
28 |
13 20 27
|
syl2anc |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( ( oc ` K ) ` ( X .\/ P ) ) e. B ) |
29 |
1 21
|
opoccl |
|- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
30 |
13 14 29
|
syl2anc |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( ( oc ` K ) ` X ) e. B ) |
31 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
32 |
31 4 21
|
opoc1 |
|- ( K e. OP -> ( ( oc ` K ) ` .1. ) = ( 0. ` K ) ) |
33 |
11 12 32
|
3syl |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( ( oc ` K ) ` .1. ) = ( 0. ` K ) ) |
34 |
|
simprl |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> X C .1. ) |
35 |
1 4
|
op1cl |
|- ( K e. OP -> .1. e. B ) |
36 |
11 12 35
|
3syl |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> .1. e. B ) |
37 |
1 21 5
|
cvrcon3b |
|- ( ( K e. OP /\ X e. B /\ .1. e. B ) -> ( X C .1. <-> ( ( oc ` K ) ` .1. ) C ( ( oc ` K ) ` X ) ) ) |
38 |
13 14 36 37
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( X C .1. <-> ( ( oc ` K ) ` .1. ) C ( ( oc ` K ) ` X ) ) ) |
39 |
34 38
|
mpbid |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( ( oc ` K ) ` .1. ) C ( ( oc ` K ) ` X ) ) |
40 |
33 39
|
eqbrtrrd |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( 0. ` K ) C ( ( oc ` K ) ` X ) ) |
41 |
1 31 5 6
|
isat |
|- ( K e. HL -> ( ( ( oc ` K ) ` X ) e. A <-> ( ( ( oc ` K ) ` X ) e. B /\ ( 0. ` K ) C ( ( oc ` K ) ` X ) ) ) ) |
42 |
11 41
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( ( ( oc ` K ) ` X ) e. A <-> ( ( ( oc ` K ) ` X ) e. B /\ ( 0. ` K ) C ( ( oc ` K ) ` X ) ) ) ) |
43 |
30 40 42
|
mpbir2and |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( ( oc ` K ) ` X ) e. A ) |
44 |
1 2 31 5 6
|
atcvreq0 |
|- ( ( K e. AtLat /\ ( ( oc ` K ) ` ( X .\/ P ) ) e. B /\ ( ( oc ` K ) ` X ) e. A ) -> ( ( ( oc ` K ) ` ( X .\/ P ) ) C ( ( oc ` K ) ` X ) <-> ( ( oc ` K ) ` ( X .\/ P ) ) = ( 0. ` K ) ) ) |
45 |
26 28 43 44
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( ( ( oc ` K ) ` ( X .\/ P ) ) C ( ( oc ` K ) ` X ) <-> ( ( oc ` K ) ` ( X .\/ P ) ) = ( 0. ` K ) ) ) |
46 |
24 45
|
mpbid |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( ( oc ` K ) ` ( X .\/ P ) ) = ( 0. ` K ) ) |
47 |
46
|
fveq2d |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` ( X .\/ P ) ) ) = ( ( oc ` K ) ` ( 0. ` K ) ) ) |
48 |
1 21
|
opococ |
|- ( ( K e. OP /\ ( X .\/ P ) e. B ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` ( X .\/ P ) ) ) = ( X .\/ P ) ) |
49 |
13 20 48
|
syl2anc |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` ( X .\/ P ) ) ) = ( X .\/ P ) ) |
50 |
31 4 21
|
opoc0 |
|- ( K e. OP -> ( ( oc ` K ) ` ( 0. ` K ) ) = .1. ) |
51 |
11 12 50
|
3syl |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( ( oc ` K ) ` ( 0. ` K ) ) = .1. ) |
52 |
47 49 51
|
3eqtr3d |
|- ( ( ( K e. HL /\ X e. B /\ P e. A ) /\ ( X C .1. /\ -. P .<_ X ) ) -> ( X .\/ P ) = .1. ) |