Metamath Proof Explorer


Theorem l1cvat

Description: Create an atom under an element covered by the lattice unit. Part of proof of Lemma B in Crawley p. 112. ( 1cvrat analog.) (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses l1cvat.v
|- V = ( Base ` W )
l1cvat.s
|- S = ( LSubSp ` W )
l1cvat.p
|- .(+) = ( LSSum ` W )
l1cvat.a
|- A = ( LSAtoms ` W )
l1cvat.c
|- C = ( 
    l1cvat.w
    |- ( ph -> W e. LVec )
    l1cvat.u
    |- ( ph -> U e. S )
    l1cvat.q
    |- ( ph -> Q e. A )
    l1cvat.r
    |- ( ph -> R e. A )
    l1cvat.n
    |- ( ph -> Q =/= R )
    l1cvat.l
    |- ( ph -> U C V )
    l1cvat.m
    |- ( ph -> -. Q C_ U )
    Assertion l1cvat
    |- ( ph -> ( ( Q .(+) R ) i^i U ) e. A )

    Proof

    Step Hyp Ref Expression
    1 l1cvat.v
     |-  V = ( Base ` W )
    2 l1cvat.s
     |-  S = ( LSubSp ` W )
    3 l1cvat.p
     |-  .(+) = ( LSSum ` W )
    4 l1cvat.a
     |-  A = ( LSAtoms ` W )
    5 l1cvat.c
     |-  C = ( 
      6 l1cvat.w
       |-  ( ph -> W e. LVec )
      7 l1cvat.u
       |-  ( ph -> U e. S )
      8 l1cvat.q
       |-  ( ph -> Q e. A )
      9 l1cvat.r
       |-  ( ph -> R e. A )
      10 l1cvat.n
       |-  ( ph -> Q =/= R )
      11 l1cvat.l
       |-  ( ph -> U C V )
      12 l1cvat.m
       |-  ( ph -> -. Q C_ U )
      13 lveclmod
       |-  ( W e. LVec -> W e. LMod )
      14 6 13 syl
       |-  ( ph -> W e. LMod )
      15 lmodabl
       |-  ( W e. LMod -> W e. Abel )
      16 14 15 syl
       |-  ( ph -> W e. Abel )
      17 2 lsssssubg
       |-  ( W e. LMod -> S C_ ( SubGrp ` W ) )
      18 14 17 syl
       |-  ( ph -> S C_ ( SubGrp ` W ) )
      19 2 4 14 8 lsatlssel
       |-  ( ph -> Q e. S )
      20 18 19 sseldd
       |-  ( ph -> Q e. ( SubGrp ` W ) )
      21 2 4 14 9 lsatlssel
       |-  ( ph -> R e. S )
      22 18 21 sseldd
       |-  ( ph -> R e. ( SubGrp ` W ) )
      23 3 lsmcom
       |-  ( ( W e. Abel /\ Q e. ( SubGrp ` W ) /\ R e. ( SubGrp ` W ) ) -> ( Q .(+) R ) = ( R .(+) Q ) )
      24 16 20 22 23 syl3anc
       |-  ( ph -> ( Q .(+) R ) = ( R .(+) Q ) )
      25 24 ineq1d
       |-  ( ph -> ( ( Q .(+) R ) i^i U ) = ( ( R .(+) Q ) i^i U ) )
      26 incom
       |-  ( ( R .(+) Q ) i^i U ) = ( U i^i ( R .(+) Q ) )
      27 25 26 eqtrdi
       |-  ( ph -> ( ( Q .(+) R ) i^i U ) = ( U i^i ( R .(+) Q ) ) )
      28 10 necomd
       |-  ( ph -> R =/= Q )
      29 1 4 14 9 lsatssv
       |-  ( ph -> R C_ V )
      30 1 2 3 4 5 6 7 8 11 12 l1cvpat
       |-  ( ph -> ( U .(+) Q ) = V )
      31 29 30 sseqtrrd
       |-  ( ph -> R C_ ( U .(+) Q ) )
      32 2 3 4 6 7 9 8 28 12 31 lsatcvat3
       |-  ( ph -> ( U i^i ( R .(+) Q ) ) e. A )
      33 27 32 eqeltrd
       |-  ( ph -> ( ( Q .(+) R ) i^i U ) e. A )