Step |
Hyp |
Ref |
Expression |
1 |
|
l1cvat.v |
|- V = ( Base ` W ) |
2 |
|
l1cvat.s |
|- S = ( LSubSp ` W ) |
3 |
|
l1cvat.p |
|- .(+) = ( LSSum ` W ) |
4 |
|
l1cvat.a |
|- A = ( LSAtoms ` W ) |
5 |
|
l1cvat.c |
|- C = (
|
6 |
|
l1cvat.w |
|- ( ph -> W e. LVec ) |
7 |
|
l1cvat.u |
|- ( ph -> U e. S ) |
8 |
|
l1cvat.q |
|- ( ph -> Q e. A ) |
9 |
|
l1cvat.r |
|- ( ph -> R e. A ) |
10 |
|
l1cvat.n |
|- ( ph -> Q =/= R ) |
11 |
|
l1cvat.l |
|- ( ph -> U C V ) |
12 |
|
l1cvat.m |
|- ( ph -> -. Q C_ U ) |
13 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
14 |
6 13
|
syl |
|- ( ph -> W e. LMod ) |
15 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
16 |
14 15
|
syl |
|- ( ph -> W e. Abel ) |
17 |
2
|
lsssssubg |
|- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |
18 |
14 17
|
syl |
|- ( ph -> S C_ ( SubGrp ` W ) ) |
19 |
2 4 14 8
|
lsatlssel |
|- ( ph -> Q e. S ) |
20 |
18 19
|
sseldd |
|- ( ph -> Q e. ( SubGrp ` W ) ) |
21 |
2 4 14 9
|
lsatlssel |
|- ( ph -> R e. S ) |
22 |
18 21
|
sseldd |
|- ( ph -> R e. ( SubGrp ` W ) ) |
23 |
3
|
lsmcom |
|- ( ( W e. Abel /\ Q e. ( SubGrp ` W ) /\ R e. ( SubGrp ` W ) ) -> ( Q .(+) R ) = ( R .(+) Q ) ) |
24 |
16 20 22 23
|
syl3anc |
|- ( ph -> ( Q .(+) R ) = ( R .(+) Q ) ) |
25 |
24
|
ineq1d |
|- ( ph -> ( ( Q .(+) R ) i^i U ) = ( ( R .(+) Q ) i^i U ) ) |
26 |
|
incom |
|- ( ( R .(+) Q ) i^i U ) = ( U i^i ( R .(+) Q ) ) |
27 |
25 26
|
eqtrdi |
|- ( ph -> ( ( Q .(+) R ) i^i U ) = ( U i^i ( R .(+) Q ) ) ) |
28 |
10
|
necomd |
|- ( ph -> R =/= Q ) |
29 |
1 4 14 9
|
lsatssv |
|- ( ph -> R C_ V ) |
30 |
1 2 3 4 5 6 7 8 11 12
|
l1cvpat |
|- ( ph -> ( U .(+) Q ) = V ) |
31 |
29 30
|
sseqtrrd |
|- ( ph -> R C_ ( U .(+) Q ) ) |
32 |
2 3 4 6 7 9 8 28 12 31
|
lsatcvat3 |
|- ( ph -> ( U i^i ( R .(+) Q ) ) e. A ) |
33 |
27 32
|
eqeltrd |
|- ( ph -> ( ( Q .(+) R ) i^i U ) e. A ) |