Step |
Hyp |
Ref |
Expression |
1 |
|
islshpcv.v |
|- V = ( Base ` W ) |
2 |
|
islshpcv.s |
|- S = ( LSubSp ` W ) |
3 |
|
islshpcv.h |
|- H = ( LSHyp ` W ) |
4 |
|
islshpcv.c |
|- C = (
|
5 |
|
islshpcv.w |
|- ( ph -> W e. LVec ) |
6 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
7 |
|
eqid |
|- ( LSAtoms ` W ) = ( LSAtoms ` W ) |
8 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
9 |
5 8
|
syl |
|- ( ph -> W e. LMod ) |
10 |
1 2 6 3 7 9
|
islshpat |
|- ( ph -> ( U e. H <-> ( U e. S /\ U =/= V /\ E. q e. ( LSAtoms ` W ) ( U ( LSSum ` W ) q ) = V ) ) ) |
11 |
|
simp12 |
|- ( ( ( ph /\ U e. S /\ U =/= V ) /\ q e. ( LSAtoms ` W ) /\ ( U ( LSSum ` W ) q ) = V ) -> U e. S ) |
12 |
1 2
|
lssss |
|- ( U e. S -> U C_ V ) |
13 |
11 12
|
syl |
|- ( ( ( ph /\ U e. S /\ U =/= V ) /\ q e. ( LSAtoms ` W ) /\ ( U ( LSSum ` W ) q ) = V ) -> U C_ V ) |
14 |
|
simp13 |
|- ( ( ( ph /\ U e. S /\ U =/= V ) /\ q e. ( LSAtoms ` W ) /\ ( U ( LSSum ` W ) q ) = V ) -> U =/= V ) |
15 |
|
df-pss |
|- ( U C. V <-> ( U C_ V /\ U =/= V ) ) |
16 |
13 14 15
|
sylanbrc |
|- ( ( ( ph /\ U e. S /\ U =/= V ) /\ q e. ( LSAtoms ` W ) /\ ( U ( LSSum ` W ) q ) = V ) -> U C. V ) |
17 |
|
psseq2 |
|- ( ( U ( LSSum ` W ) q ) = V -> ( U C. ( U ( LSSum ` W ) q ) <-> U C. V ) ) |
18 |
17
|
3ad2ant3 |
|- ( ( ( ph /\ U e. S /\ U =/= V ) /\ q e. ( LSAtoms ` W ) /\ ( U ( LSSum ` W ) q ) = V ) -> ( U C. ( U ( LSSum ` W ) q ) <-> U C. V ) ) |
19 |
16 18
|
mpbird |
|- ( ( ( ph /\ U e. S /\ U =/= V ) /\ q e. ( LSAtoms ` W ) /\ ( U ( LSSum ` W ) q ) = V ) -> U C. ( U ( LSSum ` W ) q ) ) |
20 |
5
|
3ad2ant1 |
|- ( ( ph /\ U e. S /\ U =/= V ) -> W e. LVec ) |
21 |
20
|
3ad2ant1 |
|- ( ( ( ph /\ U e. S /\ U =/= V ) /\ q e. ( LSAtoms ` W ) /\ ( U ( LSSum ` W ) q ) = V ) -> W e. LVec ) |
22 |
|
simp2 |
|- ( ( ( ph /\ U e. S /\ U =/= V ) /\ q e. ( LSAtoms ` W ) /\ ( U ( LSSum ` W ) q ) = V ) -> q e. ( LSAtoms ` W ) ) |
23 |
2 6 7 4 21 11 22
|
lcv2 |
|- ( ( ( ph /\ U e. S /\ U =/= V ) /\ q e. ( LSAtoms ` W ) /\ ( U ( LSSum ` W ) q ) = V ) -> ( U C. ( U ( LSSum ` W ) q ) <-> U C ( U ( LSSum ` W ) q ) ) ) |
24 |
19 23
|
mpbid |
|- ( ( ( ph /\ U e. S /\ U =/= V ) /\ q e. ( LSAtoms ` W ) /\ ( U ( LSSum ` W ) q ) = V ) -> U C ( U ( LSSum ` W ) q ) ) |
25 |
|
simp3 |
|- ( ( ( ph /\ U e. S /\ U =/= V ) /\ q e. ( LSAtoms ` W ) /\ ( U ( LSSum ` W ) q ) = V ) -> ( U ( LSSum ` W ) q ) = V ) |
26 |
24 25
|
breqtrd |
|- ( ( ( ph /\ U e. S /\ U =/= V ) /\ q e. ( LSAtoms ` W ) /\ ( U ( LSSum ` W ) q ) = V ) -> U C V ) |
27 |
11 26
|
jca |
|- ( ( ( ph /\ U e. S /\ U =/= V ) /\ q e. ( LSAtoms ` W ) /\ ( U ( LSSum ` W ) q ) = V ) -> ( U e. S /\ U C V ) ) |
28 |
27
|
rexlimdv3a |
|- ( ( ph /\ U e. S /\ U =/= V ) -> ( E. q e. ( LSAtoms ` W ) ( U ( LSSum ` W ) q ) = V -> ( U e. S /\ U C V ) ) ) |
29 |
28
|
3exp |
|- ( ph -> ( U e. S -> ( U =/= V -> ( E. q e. ( LSAtoms ` W ) ( U ( LSSum ` W ) q ) = V -> ( U e. S /\ U C V ) ) ) ) ) |
30 |
29
|
3impd |
|- ( ph -> ( ( U e. S /\ U =/= V /\ E. q e. ( LSAtoms ` W ) ( U ( LSSum ` W ) q ) = V ) -> ( U e. S /\ U C V ) ) ) |
31 |
|
simprl |
|- ( ( ph /\ ( U e. S /\ U C V ) ) -> U e. S ) |
32 |
5
|
adantr |
|- ( ( ph /\ ( U e. S /\ U C V ) ) -> W e. LVec ) |
33 |
9
|
adantr |
|- ( ( ph /\ ( U e. S /\ U C V ) ) -> W e. LMod ) |
34 |
1 2
|
lss1 |
|- ( W e. LMod -> V e. S ) |
35 |
33 34
|
syl |
|- ( ( ph /\ ( U e. S /\ U C V ) ) -> V e. S ) |
36 |
|
simprr |
|- ( ( ph /\ ( U e. S /\ U C V ) ) -> U C V ) |
37 |
2 4 32 31 35 36
|
lcvpss |
|- ( ( ph /\ ( U e. S /\ U C V ) ) -> U C. V ) |
38 |
37
|
pssned |
|- ( ( ph /\ ( U e. S /\ U C V ) ) -> U =/= V ) |
39 |
2 6 7 4 33 31 35 36
|
lcvat |
|- ( ( ph /\ ( U e. S /\ U C V ) ) -> E. q e. ( LSAtoms ` W ) ( U ( LSSum ` W ) q ) = V ) |
40 |
31 38 39
|
3jca |
|- ( ( ph /\ ( U e. S /\ U C V ) ) -> ( U e. S /\ U =/= V /\ E. q e. ( LSAtoms ` W ) ( U ( LSSum ` W ) q ) = V ) ) |
41 |
40
|
ex |
|- ( ph -> ( ( U e. S /\ U C V ) -> ( U e. S /\ U =/= V /\ E. q e. ( LSAtoms ` W ) ( U ( LSSum ` W ) q ) = V ) ) ) |
42 |
30 41
|
impbid |
|- ( ph -> ( ( U e. S /\ U =/= V /\ E. q e. ( LSAtoms ` W ) ( U ( LSSum ` W ) q ) = V ) <-> ( U e. S /\ U C V ) ) ) |
43 |
10 42
|
bitrd |
|- ( ph -> ( U e. H <-> ( U e. S /\ U C V ) ) ) |