Metamath Proof Explorer


Theorem lshpat

Description: Create an atom under a hyperplane. Part of proof of Lemma B in Crawley p. 112. ( lhpat analog.) TODO: This changes U C V in l1cvpat and l1cvat to U e. H , which in turn change U e. H in islshpcv to U C V , with a couple of conversions of span to atom. Seems convoluted. Would a direct proof be better? (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses lshpat.s S = LSubSp W
lshpat.p ˙ = LSSum W
ishpat.h H = LSHyp W
lshpat.a A = LSAtoms W
lshpat.w φ W LVec
lshpat.l φ U H
lshpat.q φ Q A
lshpat.r φ R A
lshpat.n φ Q R
lshpat.m φ ¬ Q U
Assertion lshpat φ Q ˙ R U A

Proof

Step Hyp Ref Expression
1 lshpat.s S = LSubSp W
2 lshpat.p ˙ = LSSum W
3 ishpat.h H = LSHyp W
4 lshpat.a A = LSAtoms W
5 lshpat.w φ W LVec
6 lshpat.l φ U H
7 lshpat.q φ Q A
8 lshpat.r φ R A
9 lshpat.n φ Q R
10 lshpat.m φ ¬ Q U
11 eqid Base W = Base W
12 eqid L W = L W
13 11 1 3 12 5 islshpcv φ U H U S U L W Base W
14 6 13 mpbid φ U S U L W Base W
15 14 simpld φ U S
16 14 simprd φ U L W Base W
17 11 1 2 4 12 5 15 7 8 9 16 10 l1cvat φ Q ˙ R U A