| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2a.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lclkrlem2a.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lclkrlem2a.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | lclkrlem2a.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | lclkrlem2a.z | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 6 |  | lclkrlem2a.p | ⊢  ⊕   =  ( LSSum ‘ 𝑈 ) | 
						
							| 7 |  | lclkrlem2a.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 8 |  | lclkrlem2a.a | ⊢ 𝐴  =  ( LSAtoms ‘ 𝑈 ) | 
						
							| 9 |  | lclkrlem2a.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | lclkrlem2a.b | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 11 |  | lclkrlem2a.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 12 |  | lclkrlem2a.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 13 |  | lclkrlem2a.e | ⊢ ( 𝜑  →  (  ⊥  ‘ { 𝑋 } )  ≠  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 14 |  | lclkrlem2b.da | ⊢ ( 𝜑  →  ( ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∨  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) ) | 
						
							| 15 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 16 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  𝐵  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 17 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 18 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 19 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  (  ⊥  ‘ { 𝑋 } )  ≠  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } ) ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 15 16 17 18 19 20 | lclkrlem2a | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  ( ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) )  ∩  (  ⊥  ‘ { 𝐵 } ) )  ∈  𝐴 ) | 
						
							| 22 | 1 3 9 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 23 |  | lmodabl | ⊢ ( 𝑈  ∈  LMod  →  𝑈  ∈  Abel ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝜑  →  𝑈  ∈  Abel ) | 
						
							| 25 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 26 | 25 | lsssssubg | ⊢ ( 𝑈  ∈  LMod  →  ( LSubSp ‘ 𝑈 )  ⊆  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 27 | 22 26 | syl | ⊢ ( 𝜑  →  ( LSubSp ‘ 𝑈 )  ⊆  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 28 | 11 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 29 | 4 25 7 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 30 | 22 28 29 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 31 | 27 30 | sseldd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 32 | 12 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 33 | 4 25 7 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 34 | 22 32 33 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 35 | 27 34 | sseldd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 36 | 6 | lsmcom | ⊢ ( ( 𝑈  ∈  Abel  ∧  ( 𝑁 ‘ { 𝑋 } )  ∈  ( SubGrp ‘ 𝑈 )  ∧  ( 𝑁 ‘ { 𝑌 } )  ∈  ( SubGrp ‘ 𝑈 ) )  →  ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) )  =  ( ( 𝑁 ‘ { 𝑌 } )  ⊕  ( 𝑁 ‘ { 𝑋 } ) ) ) | 
						
							| 37 | 24 31 35 36 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) )  =  ( ( 𝑁 ‘ { 𝑌 } )  ⊕  ( 𝑁 ‘ { 𝑋 } ) ) ) | 
						
							| 38 | 37 | ineq1d | ⊢ ( 𝜑  →  ( ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) )  ∩  (  ⊥  ‘ { 𝐵 } ) )  =  ( ( ( 𝑁 ‘ { 𝑌 } )  ⊕  ( 𝑁 ‘ { 𝑋 } ) )  ∩  (  ⊥  ‘ { 𝐵 } ) ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  ( ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) )  ∩  (  ⊥  ‘ { 𝐵 } ) )  =  ( ( ( 𝑁 ‘ { 𝑌 } )  ⊕  ( 𝑁 ‘ { 𝑋 } ) )  ∩  (  ⊥  ‘ { 𝐵 } ) ) ) | 
						
							| 40 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 41 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  𝐵  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 42 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 43 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 44 | 13 | necomd | ⊢ ( 𝜑  →  (  ⊥  ‘ { 𝑌 } )  ≠  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  (  ⊥  ‘ { 𝑌 } )  ≠  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 46 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) | 
						
							| 47 | 1 2 3 4 5 6 7 8 40 41 42 43 45 46 | lclkrlem2a | ⊢ ( ( 𝜑  ∧  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  ( ( ( 𝑁 ‘ { 𝑌 } )  ⊕  ( 𝑁 ‘ { 𝑋 } ) )  ∩  (  ⊥  ‘ { 𝐵 } ) )  ∈  𝐴 ) | 
						
							| 48 | 39 47 | eqeltrd | ⊢ ( ( 𝜑  ∧  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) )  →  ( ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) )  ∩  (  ⊥  ‘ { 𝐵 } ) )  ∈  𝐴 ) | 
						
							| 49 | 21 48 14 | mpjaodan | ⊢ ( 𝜑  →  ( ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) )  ∩  (  ⊥  ‘ { 𝐵 } ) )  ∈  𝐴 ) |