| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lclkrlem2a.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lclkrlem2a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lclkrlem2a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
lclkrlem2a.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 6 |
|
lclkrlem2a.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 7 |
|
lclkrlem2a.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 8 |
|
lclkrlem2a.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 9 |
|
lclkrlem2a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
lclkrlem2a.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 11 |
|
lclkrlem2a.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 12 |
|
lclkrlem2a.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 13 |
|
lclkrlem2a.e |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ≠ ( ⊥ ‘ { 𝑌 } ) ) |
| 14 |
|
lclkrlem2b.da |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 15 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 16 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ) → 𝐵 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 17 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 18 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 19 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ) → ( ⊥ ‘ { 𝑋 } ) ≠ ( ⊥ ‘ { 𝑌 } ) ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ) → ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ) |
| 21 |
1 2 3 4 5 6 7 8 15 16 17 18 19 20
|
lclkrlem2a |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ) → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ { 𝐵 } ) ) ∈ 𝐴 ) |
| 22 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 23 |
|
lmodabl |
⊢ ( 𝑈 ∈ LMod → 𝑈 ∈ Abel ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Abel ) |
| 25 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 26 |
25
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 27 |
22 26
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 28 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 29 |
4 25 7
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 30 |
22 28 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 31 |
27 30
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 32 |
12
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 33 |
4 25 7
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 34 |
22 32 33
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 35 |
27 34
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 36 |
6
|
lsmcom |
⊢ ( ( 𝑈 ∈ Abel ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 37 |
24 31 35 36
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 38 |
37
|
ineq1d |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ { 𝐵 } ) ) = ( ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ∩ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ { 𝐵 } ) ) = ( ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ∩ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 40 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 41 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) → 𝐵 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 42 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 43 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 44 |
13
|
necomd |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑌 } ) ≠ ( ⊥ ‘ { 𝑋 } ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) → ( ⊥ ‘ { 𝑌 } ) ≠ ( ⊥ ‘ { 𝑋 } ) ) |
| 46 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) → ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) |
| 47 |
1 2 3 4 5 6 7 8 40 41 42 43 45 46
|
lclkrlem2a |
⊢ ( ( 𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) → ( ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ∩ ( ⊥ ‘ { 𝐵 } ) ) ∈ 𝐴 ) |
| 48 |
39 47
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ { 𝐵 } ) ) ∈ 𝐴 ) |
| 49 |
21 48 14
|
mpjaodan |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ { 𝐵 } ) ) ∈ 𝐴 ) |