Metamath Proof Explorer


Theorem lclkrlem2c

Description: Lemma for lclkr . (Contributed by NM, 16-Jan-2015)

Ref Expression
Hypotheses lclkrlem2a.h 𝐻 = ( LHyp ‘ 𝐾 )
lclkrlem2a.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem2a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem2a.v 𝑉 = ( Base ‘ 𝑈 )
lclkrlem2a.z 0 = ( 0g𝑈 )
lclkrlem2a.p = ( LSSum ‘ 𝑈 )
lclkrlem2a.n 𝑁 = ( LSpan ‘ 𝑈 )
lclkrlem2a.a 𝐴 = ( LSAtoms ‘ 𝑈 )
lclkrlem2a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lclkrlem2a.b ( 𝜑𝐵 ∈ ( 𝑉 ∖ { 0 } ) )
lclkrlem2a.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
lclkrlem2a.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
lclkrlem2a.e ( 𝜑 → ( ‘ { 𝑋 } ) ≠ ( ‘ { 𝑌 } ) )
lclkrlem2b.da ( 𝜑 → ( ¬ 𝑋 ∈ ( ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ‘ { 𝐵 } ) ) )
lclkrlem2c.j 𝐽 = ( LSHyp ‘ 𝑈 )
Assertion lclkrlem2c ( 𝜑 → ( ( ( ‘ { 𝑋 } ) ∩ ( ‘ { 𝑌 } ) ) ( 𝑁 ‘ { 𝐵 } ) ) ∈ 𝐽 )

Proof

Step Hyp Ref Expression
1 lclkrlem2a.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lclkrlem2a.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lclkrlem2a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lclkrlem2a.v 𝑉 = ( Base ‘ 𝑈 )
5 lclkrlem2a.z 0 = ( 0g𝑈 )
6 lclkrlem2a.p = ( LSSum ‘ 𝑈 )
7 lclkrlem2a.n 𝑁 = ( LSpan ‘ 𝑈 )
8 lclkrlem2a.a 𝐴 = ( LSAtoms ‘ 𝑈 )
9 lclkrlem2a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 lclkrlem2a.b ( 𝜑𝐵 ∈ ( 𝑉 ∖ { 0 } ) )
11 lclkrlem2a.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
12 lclkrlem2a.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
13 lclkrlem2a.e ( 𝜑 → ( ‘ { 𝑋 } ) ≠ ( ‘ { 𝑌 } ) )
14 lclkrlem2b.da ( 𝜑 → ( ¬ 𝑋 ∈ ( ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ‘ { 𝐵 } ) ) )
15 lclkrlem2c.j 𝐽 = ( LSHyp ‘ 𝑈 )
16 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
17 eqid ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
18 11 eldifad ( 𝜑𝑋𝑉 )
19 1 3 4 7 16 dihlsprn ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
20 9 18 19 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
21 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
22 4 7 5 8 21 12 lsatlspsn ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ 𝐴 )
23 1 16 3 6 8 9 20 22 dihsmatrn ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
24 10 eldifad ( 𝜑𝐵𝑉 )
25 24 snssd ( 𝜑 → { 𝐵 } ⊆ 𝑉 )
26 1 16 3 4 2 dochcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ { 𝐵 } ⊆ 𝑉 ) → ( ‘ { 𝐵 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
27 9 25 26 syl2anc ( 𝜑 → ( ‘ { 𝐵 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
28 1 16 3 4 2 17 9 23 27 dochdmm1 ( 𝜑 → ( ‘ ( ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ‘ { 𝐵 } ) ) ) = ( ( ‘ ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( ‘ ( ‘ { 𝐵 } ) ) ) )
29 12 eldifad ( 𝜑𝑌𝑉 )
30 4 7 6 21 18 29 lsmpr ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) )
31 df-pr { 𝑋 , 𝑌 } = ( { 𝑋 } ∪ { 𝑌 } )
32 31 fveq2i ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) )
33 30 32 eqtr3di ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) )
34 33 fveq2d ( 𝜑 → ( ‘ ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) ) = ( ‘ ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) )
35 18 snssd ( 𝜑 → { 𝑋 } ⊆ 𝑉 )
36 29 snssd ( 𝜑 → { 𝑌 } ⊆ 𝑉 )
37 35 36 unssd ( 𝜑 → ( { 𝑋 } ∪ { 𝑌 } ) ⊆ 𝑉 )
38 1 3 2 4 7 9 37 dochocsp ( 𝜑 → ( ‘ ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) = ( ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) )
39 1 3 4 2 dochdmj1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ { 𝑋 } ⊆ 𝑉 ∧ { 𝑌 } ⊆ 𝑉 ) → ( ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( ( ‘ { 𝑋 } ) ∩ ( ‘ { 𝑌 } ) ) )
40 9 35 36 39 syl3anc ( 𝜑 → ( ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( ( ‘ { 𝑋 } ) ∩ ( ‘ { 𝑌 } ) ) )
41 34 38 40 3eqtrd ( 𝜑 → ( ‘ ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) ) = ( ( ‘ { 𝑋 } ) ∩ ( ‘ { 𝑌 } ) ) )
42 1 3 2 4 7 9 24 dochocsn ( 𝜑 → ( ‘ ( ‘ { 𝐵 } ) ) = ( 𝑁 ‘ { 𝐵 } ) )
43 41 42 oveq12d ( 𝜑 → ( ( ‘ ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( ‘ ( ‘ { 𝐵 } ) ) ) = ( ( ( ‘ { 𝑋 } ) ∩ ( ‘ { 𝑌 } ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { 𝐵 } ) ) )
44 1 16 3 4 2 dochcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ { 𝑋 } ⊆ 𝑉 ) → ( ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
45 9 35 44 syl2anc ( 𝜑 → ( ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
46 1 16 3 4 2 dochcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ { 𝑌 } ⊆ 𝑉 ) → ( ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
47 9 36 46 syl2anc ( 𝜑 → ( ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
48 1 16 dihmeetcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ( ‘ { 𝑋 } ) ∩ ( ‘ { 𝑌 } ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
49 9 45 47 48 syl12anc ( 𝜑 → ( ( ‘ { 𝑋 } ) ∩ ( ‘ { 𝑌 } ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
50 1 3 4 6 7 16 17 9 49 24 dihjat1 ( 𝜑 → ( ( ( ‘ { 𝑋 } ) ∩ ( ‘ { 𝑌 } ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { 𝐵 } ) ) = ( ( ( ‘ { 𝑋 } ) ∩ ( ‘ { 𝑌 } ) ) ( 𝑁 ‘ { 𝐵 } ) ) )
51 28 43 50 3eqtrrd ( 𝜑 → ( ( ( ‘ { 𝑋 } ) ∩ ( ‘ { 𝑌 } ) ) ( 𝑁 ‘ { 𝐵 } ) ) = ( ‘ ( ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ‘ { 𝐵 } ) ) ) )
52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 lclkrlem2b ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ‘ { 𝐵 } ) ) ∈ 𝐴 )
53 1 3 2 8 15 9 52 dochsatshp ( 𝜑 → ( ‘ ( ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ‘ { 𝐵 } ) ) ) ∈ 𝐽 )
54 51 53 eqeltrd ( 𝜑 → ( ( ( ‘ { 𝑋 } ) ∩ ( ‘ { 𝑌 } ) ) ( 𝑁 ‘ { 𝐵 } ) ) ∈ 𝐽 )