Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lclkrlem2a.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lclkrlem2a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lclkrlem2a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lclkrlem2a.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
lclkrlem2a.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
7 |
|
lclkrlem2a.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
lclkrlem2a.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
9 |
|
lclkrlem2a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lclkrlem2a.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑉 ∖ { 0 } ) ) |
11 |
|
lclkrlem2a.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
12 |
|
lclkrlem2a.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
13 |
|
lclkrlem2a.e |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ≠ ( ⊥ ‘ { 𝑌 } ) ) |
14 |
|
lclkrlem2b.da |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) |
15 |
|
lclkrlem2c.j |
⊢ 𝐽 = ( LSHyp ‘ 𝑈 ) |
16 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
17 |
|
eqid |
⊢ ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
18 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
19 |
1 3 4 7 16
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
20 |
9 18 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
21 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
22 |
4 7 5 8 21 12
|
lsatlspsn |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ 𝐴 ) |
23 |
1 16 3 6 8 9 20 22
|
dihsmatrn |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
24 |
10
|
eldifad |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
25 |
24
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ 𝑉 ) |
26 |
1 16 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝐵 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝐵 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
27 |
9 25 26
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝐵 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
28 |
1 16 3 4 2 17 9 23 27
|
dochdmm1 |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ { 𝐵 } ) ) ) = ( ( ⊥ ‘ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
29 |
12
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
30 |
4 7 6 21 18 29
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) |
31 |
|
df-pr |
⊢ { 𝑋 , 𝑌 } = ( { 𝑋 } ∪ { 𝑌 } ) |
32 |
31
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) |
33 |
30 32
|
eqtr3di |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) |
34 |
33
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) = ( ⊥ ‘ ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) ) |
35 |
18
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
36 |
29
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
37 |
35 36
|
unssd |
⊢ ( 𝜑 → ( { 𝑋 } ∪ { 𝑌 } ) ⊆ 𝑉 ) |
38 |
1 3 2 4 7 9 37
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) = ( ⊥ ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) |
39 |
1 3 4 2
|
dochdmj1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑋 } ⊆ 𝑉 ∧ { 𝑌 } ⊆ 𝑉 ) → ( ⊥ ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ) |
40 |
9 35 36 39
|
syl3anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ) |
41 |
34 38 40
|
3eqtrd |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) = ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ) |
42 |
1 3 2 4 7 9 24
|
dochocsn |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) = ( 𝑁 ‘ { 𝐵 } ) ) |
43 |
41 42
|
oveq12d |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) = ( ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { 𝐵 } ) ) ) |
44 |
1 16 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑋 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
45 |
9 35 44
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
46 |
1 16 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑌 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
47 |
9 36 46
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
48 |
1 16
|
dihmeetcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ⊥ ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( ⊥ ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
49 |
9 45 47 48
|
syl12anc |
⊢ ( 𝜑 → ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
50 |
1 3 4 6 7 16 17 9 49 24
|
dihjat1 |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { 𝐵 } ) ) = ( ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ) |
51 |
28 43 50
|
3eqtrrd |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) = ( ⊥ ‘ ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
lclkrlem2b |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ { 𝐵 } ) ) ∈ 𝐴 ) |
53 |
1 3 2 8 15 9 52
|
dochsatshp |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ { 𝐵 } ) ) ) ∈ 𝐽 ) |
54 |
51 53
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ∈ 𝐽 ) |