| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2a.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lclkrlem2a.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lclkrlem2a.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | lclkrlem2a.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | lclkrlem2a.z | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 6 |  | lclkrlem2a.p | ⊢  ⊕   =  ( LSSum ‘ 𝑈 ) | 
						
							| 7 |  | lclkrlem2a.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 8 |  | lclkrlem2a.a | ⊢ 𝐴  =  ( LSAtoms ‘ 𝑈 ) | 
						
							| 9 |  | lclkrlem2a.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | lclkrlem2a.b | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 11 |  | lclkrlem2a.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 12 |  | lclkrlem2a.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 13 |  | lclkrlem2a.e | ⊢ ( 𝜑  →  (  ⊥  ‘ { 𝑋 } )  ≠  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 14 |  | lclkrlem2b.da | ⊢ ( 𝜑  →  ( ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∨  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) ) | 
						
							| 15 |  | lclkrlem2c.j | ⊢ 𝐽  =  ( LSHyp ‘ 𝑈 ) | 
						
							| 16 |  | eqid | ⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 17 |  | eqid | ⊢ ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 18 | 11 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 19 | 1 3 4 7 16 | dihlsprn | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 20 | 9 18 19 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 21 | 1 3 9 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 22 | 4 7 5 8 21 12 | lsatlspsn | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  𝐴 ) | 
						
							| 23 | 1 16 3 6 8 9 20 22 | dihsmatrn | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 24 | 10 | eldifad | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 25 | 24 | snssd | ⊢ ( 𝜑  →  { 𝐵 }  ⊆  𝑉 ) | 
						
							| 26 | 1 16 3 4 2 | dochcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝐵 }  ⊆  𝑉 )  →  (  ⊥  ‘ { 𝐵 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 27 | 9 25 26 | syl2anc | ⊢ ( 𝜑  →  (  ⊥  ‘ { 𝐵 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 28 | 1 16 3 4 2 17 9 23 27 | dochdmm1 | ⊢ ( 𝜑  →  (  ⊥  ‘ ( ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) )  ∩  (  ⊥  ‘ { 𝐵 } ) ) )  =  ( (  ⊥  ‘ ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) (  ⊥  ‘ (  ⊥  ‘ { 𝐵 } ) ) ) ) | 
						
							| 29 | 12 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 30 | 4 7 6 21 18 29 | lsmpr | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  =  ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 31 |  | df-pr | ⊢ { 𝑋 ,  𝑌 }  =  ( { 𝑋 }  ∪  { 𝑌 } ) | 
						
							| 32 | 31 | fveq2i | ⊢ ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  =  ( 𝑁 ‘ ( { 𝑋 }  ∪  { 𝑌 } ) ) | 
						
							| 33 | 30 32 | eqtr3di | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝑁 ‘ ( { 𝑋 }  ∪  { 𝑌 } ) ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( 𝜑  →  (  ⊥  ‘ ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) ) )  =  (  ⊥  ‘ ( 𝑁 ‘ ( { 𝑋 }  ∪  { 𝑌 } ) ) ) ) | 
						
							| 35 | 18 | snssd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  𝑉 ) | 
						
							| 36 | 29 | snssd | ⊢ ( 𝜑  →  { 𝑌 }  ⊆  𝑉 ) | 
						
							| 37 | 35 36 | unssd | ⊢ ( 𝜑  →  ( { 𝑋 }  ∪  { 𝑌 } )  ⊆  𝑉 ) | 
						
							| 38 | 1 3 2 4 7 9 37 | dochocsp | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝑁 ‘ ( { 𝑋 }  ∪  { 𝑌 } ) ) )  =  (  ⊥  ‘ ( { 𝑋 }  ∪  { 𝑌 } ) ) ) | 
						
							| 39 | 1 3 4 2 | dochdmj1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝑋 }  ⊆  𝑉  ∧  { 𝑌 }  ⊆  𝑉 )  →  (  ⊥  ‘ ( { 𝑋 }  ∪  { 𝑌 } ) )  =  ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) ) ) | 
						
							| 40 | 9 35 36 39 | syl3anc | ⊢ ( 𝜑  →  (  ⊥  ‘ ( { 𝑋 }  ∪  { 𝑌 } ) )  =  ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) ) ) | 
						
							| 41 | 34 38 40 | 3eqtrd | ⊢ ( 𝜑  →  (  ⊥  ‘ ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) ) )  =  ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) ) ) | 
						
							| 42 | 1 3 2 4 7 9 24 | dochocsn | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ { 𝐵 } ) )  =  ( 𝑁 ‘ { 𝐵 } ) ) | 
						
							| 43 | 41 42 | oveq12d | ⊢ ( 𝜑  →  ( (  ⊥  ‘ ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) (  ⊥  ‘ (  ⊥  ‘ { 𝐵 } ) ) )  =  ( ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { 𝐵 } ) ) ) | 
						
							| 44 | 1 16 3 4 2 | dochcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝑋 }  ⊆  𝑉 )  →  (  ⊥  ‘ { 𝑋 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 45 | 9 35 44 | syl2anc | ⊢ ( 𝜑  →  (  ⊥  ‘ { 𝑋 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 46 | 1 16 3 4 2 | dochcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝑌 }  ⊆  𝑉 )  →  (  ⊥  ‘ { 𝑌 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 47 | 9 36 46 | syl2anc | ⊢ ( 𝜑  →  (  ⊥  ‘ { 𝑌 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 48 | 1 16 | dihmeetcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( (  ⊥  ‘ { 𝑋 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )  ∧  (  ⊥  ‘ { 𝑌 } )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 49 | 9 45 47 48 | syl12anc | ⊢ ( 𝜑  →  ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 50 | 1 3 4 6 7 16 17 9 49 24 | dihjat1 | ⊢ ( 𝜑  →  ( ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { 𝐵 } ) )  =  ( ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) ) ) | 
						
							| 51 | 28 43 50 | 3eqtrrd | ⊢ ( 𝜑  →  ( ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) )  =  (  ⊥  ‘ ( ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) )  ∩  (  ⊥  ‘ { 𝐵 } ) ) ) ) | 
						
							| 52 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | lclkrlem2b | ⊢ ( 𝜑  →  ( ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) )  ∩  (  ⊥  ‘ { 𝐵 } ) )  ∈  𝐴 ) | 
						
							| 53 | 1 3 2 8 15 9 52 | dochsatshp | ⊢ ( 𝜑  →  (  ⊥  ‘ ( ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) )  ∩  (  ⊥  ‘ { 𝐵 } ) ) )  ∈  𝐽 ) | 
						
							| 54 | 51 53 | eqeltrd | ⊢ ( 𝜑  →  ( ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) )  ∈  𝐽 ) |