| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochdmm1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochdmm1.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochdmm1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochdmm1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
dochdmm1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
dochdmm1.j |
⊢ ∨ = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
dochdmm1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
dochdmm1.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
| 9 |
|
dochdmm1.y |
⊢ ( 𝜑 → 𝑌 ∈ ran 𝐼 ) |
| 10 |
1 3 2 4
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ⊆ 𝑉 ) |
| 11 |
7 8 10
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
| 12 |
1 3 4 5
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
| 13 |
7 11 12
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
| 14 |
1 3 2 4
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → 𝑌 ⊆ 𝑉 ) |
| 15 |
7 9 14
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑉 ) |
| 16 |
1 3 4 5
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑌 ) ⊆ 𝑉 ) |
| 17 |
7 15 16
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑌 ) ⊆ 𝑉 ) |
| 18 |
1 3 4 5
|
dochdmj1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ∧ ( ⊥ ‘ 𝑌 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∪ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 19 |
7 13 17 18
|
syl3anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∪ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 20 |
1 2 5
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 21 |
7 8 20
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 22 |
1 2 5
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 23 |
7 9 22
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 24 |
21 23
|
ineq12d |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) = ( 𝑋 ∩ 𝑌 ) ) |
| 25 |
19 24
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑋 ∩ 𝑌 ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∪ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑋 ∩ 𝑌 ) ) = ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∪ ( ⊥ ‘ 𝑌 ) ) ) ) ) |
| 27 |
1 3 4 5 6
|
djhval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ∧ ( ⊥ ‘ 𝑌 ) ⊆ 𝑉 ) → ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) = ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∪ ( ⊥ ‘ 𝑌 ) ) ) ) ) |
| 28 |
7 13 17 27
|
syl3anc |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) = ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∪ ( ⊥ ‘ 𝑌 ) ) ) ) ) |
| 29 |
26 28
|
eqtr4d |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑋 ∩ 𝑌 ) ) = ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ 𝑌 ) ) ) |