Metamath Proof Explorer


Theorem dochdmm1

Description: De Morgan-like law for closed subspace orthocomplement. (Contributed by NM, 13-Jan-2015)

Ref Expression
Hypotheses dochdmm1.h 𝐻 = ( LHyp ‘ 𝐾 )
dochdmm1.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dochdmm1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochdmm1.v 𝑉 = ( Base ‘ 𝑈 )
dochdmm1.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochdmm1.j = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
dochdmm1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochdmm1.x ( 𝜑𝑋 ∈ ran 𝐼 )
dochdmm1.y ( 𝜑𝑌 ∈ ran 𝐼 )
Assertion dochdmm1 ( 𝜑 → ( ‘ ( 𝑋𝑌 ) ) = ( ( 𝑋 ) ( 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 dochdmm1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochdmm1.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
3 dochdmm1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochdmm1.v 𝑉 = ( Base ‘ 𝑈 )
5 dochdmm1.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
6 dochdmm1.j = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
7 dochdmm1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 dochdmm1.x ( 𝜑𝑋 ∈ ran 𝐼 )
9 dochdmm1.y ( 𝜑𝑌 ∈ ran 𝐼 )
10 1 3 2 4 dihrnss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋𝑉 )
11 7 8 10 syl2anc ( 𝜑𝑋𝑉 )
12 1 3 4 5 dochssv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑋 ) ⊆ 𝑉 )
13 7 11 12 syl2anc ( 𝜑 → ( 𝑋 ) ⊆ 𝑉 )
14 1 3 2 4 dihrnss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → 𝑌𝑉 )
15 7 9 14 syl2anc ( 𝜑𝑌𝑉 )
16 1 3 4 5 dochssv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉 ) → ( 𝑌 ) ⊆ 𝑉 )
17 7 15 16 syl2anc ( 𝜑 → ( 𝑌 ) ⊆ 𝑉 )
18 1 3 4 5 dochdmj1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ) ⊆ 𝑉 ∧ ( 𝑌 ) ⊆ 𝑉 ) → ( ‘ ( ( 𝑋 ) ∪ ( 𝑌 ) ) ) = ( ( ‘ ( 𝑋 ) ) ∩ ( ‘ ( 𝑌 ) ) ) )
19 7 13 17 18 syl3anc ( 𝜑 → ( ‘ ( ( 𝑋 ) ∪ ( 𝑌 ) ) ) = ( ( ‘ ( 𝑋 ) ) ∩ ( ‘ ( 𝑌 ) ) ) )
20 1 2 5 dochoc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ‘ ( 𝑋 ) ) = 𝑋 )
21 7 8 20 syl2anc ( 𝜑 → ( ‘ ( 𝑋 ) ) = 𝑋 )
22 1 2 5 dochoc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( ‘ ( 𝑌 ) ) = 𝑌 )
23 7 9 22 syl2anc ( 𝜑 → ( ‘ ( 𝑌 ) ) = 𝑌 )
24 21 23 ineq12d ( 𝜑 → ( ( ‘ ( 𝑋 ) ) ∩ ( ‘ ( 𝑌 ) ) ) = ( 𝑋𝑌 ) )
25 19 24 eqtr2d ( 𝜑 → ( 𝑋𝑌 ) = ( ‘ ( ( 𝑋 ) ∪ ( 𝑌 ) ) ) )
26 25 fveq2d ( 𝜑 → ( ‘ ( 𝑋𝑌 ) ) = ( ‘ ( ‘ ( ( 𝑋 ) ∪ ( 𝑌 ) ) ) ) )
27 1 3 4 5 6 djhval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ) ⊆ 𝑉 ∧ ( 𝑌 ) ⊆ 𝑉 ) → ( ( 𝑋 ) ( 𝑌 ) ) = ( ‘ ( ‘ ( ( 𝑋 ) ∪ ( 𝑌 ) ) ) ) )
28 7 13 17 27 syl3anc ( 𝜑 → ( ( 𝑋 ) ( 𝑌 ) ) = ( ‘ ( ‘ ( ( 𝑋 ) ∪ ( 𝑌 ) ) ) ) )
29 26 28 eqtr4d ( 𝜑 → ( ‘ ( 𝑋𝑌 ) ) = ( ( 𝑋 ) ( 𝑌 ) ) )