Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lclkrlem2a.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lclkrlem2a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lclkrlem2a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lclkrlem2a.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
lclkrlem2a.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
7 |
|
lclkrlem2a.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
lclkrlem2a.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
9 |
|
lclkrlem2a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lclkrlem2a.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑉 ∖ { 0 } ) ) |
11 |
|
lclkrlem2a.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
12 |
|
lclkrlem2a.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
13 |
|
lclkrlem2a.e |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ≠ ( ⊥ ‘ { 𝑌 } ) ) |
14 |
|
lclkrlem2b.da |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) |
15 |
|
lclkrlem2d.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
17 |
16
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
18 |
1 15 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑋 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
19 |
9 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
20 |
12
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
21 |
20
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
22 |
1 15 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑌 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝑌 } ) ∈ ran 𝐼 ) |
23 |
9 21 22
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑌 } ) ∈ ran 𝐼 ) |
24 |
1 15
|
dihmeetcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ⊥ ‘ { 𝑋 } ) ∈ ran 𝐼 ∧ ( ⊥ ‘ { 𝑌 } ) ∈ ran 𝐼 ) ) → ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ∈ ran 𝐼 ) |
25 |
9 19 23 24
|
syl12anc |
⊢ ( 𝜑 → ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ∈ ran 𝐼 ) |
26 |
10
|
eldifad |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
27 |
1 3 4 6 7 15 9 25 26
|
dihsmsprn |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ∈ ran 𝐼 ) |