| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2a.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lclkrlem2a.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lclkrlem2a.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | lclkrlem2a.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | lclkrlem2a.z | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 6 |  | lclkrlem2a.p | ⊢  ⊕   =  ( LSSum ‘ 𝑈 ) | 
						
							| 7 |  | lclkrlem2a.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 8 |  | lclkrlem2a.a | ⊢ 𝐴  =  ( LSAtoms ‘ 𝑈 ) | 
						
							| 9 |  | lclkrlem2a.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | lclkrlem2a.b | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 11 |  | lclkrlem2a.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 12 |  | lclkrlem2a.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 13 |  | lclkrlem2a.e | ⊢ ( 𝜑  →  (  ⊥  ‘ { 𝑋 } )  ≠  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 14 |  | lclkrlem2b.da | ⊢ ( 𝜑  →  ( ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∨  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) ) | 
						
							| 15 |  | lclkrlem2d.i | ⊢ 𝐼  =  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 | 11 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 17 | 16 | snssd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  𝑉 ) | 
						
							| 18 | 1 15 3 4 2 | dochcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝑋 }  ⊆  𝑉 )  →  (  ⊥  ‘ { 𝑋 } )  ∈  ran  𝐼 ) | 
						
							| 19 | 9 17 18 | syl2anc | ⊢ ( 𝜑  →  (  ⊥  ‘ { 𝑋 } )  ∈  ran  𝐼 ) | 
						
							| 20 | 12 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 21 | 20 | snssd | ⊢ ( 𝜑  →  { 𝑌 }  ⊆  𝑉 ) | 
						
							| 22 | 1 15 3 4 2 | dochcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝑌 }  ⊆  𝑉 )  →  (  ⊥  ‘ { 𝑌 } )  ∈  ran  𝐼 ) | 
						
							| 23 | 9 21 22 | syl2anc | ⊢ ( 𝜑  →  (  ⊥  ‘ { 𝑌 } )  ∈  ran  𝐼 ) | 
						
							| 24 | 1 15 | dihmeetcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( (  ⊥  ‘ { 𝑋 } )  ∈  ran  𝐼  ∧  (  ⊥  ‘ { 𝑌 } )  ∈  ran  𝐼 ) )  →  ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) )  ∈  ran  𝐼 ) | 
						
							| 25 | 9 19 23 24 | syl12anc | ⊢ ( 𝜑  →  ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) )  ∈  ran  𝐼 ) | 
						
							| 26 | 10 | eldifad | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 27 | 1 3 4 6 7 15 9 25 26 | dihsmsprn | ⊢ ( 𝜑  →  ( ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) )  ∈  ran  𝐼 ) |