| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochocsn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochocsn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochocsn.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochocsn.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
dochocsn.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 6 |
|
dochocsn.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 7 |
|
dochocsn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 8 |
7
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
| 9 |
1 2 3 4 5 6 8
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) = ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) ) |
| 11 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 12 |
1 2 4 5 11
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 13 |
6 7 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 14 |
1 11 3
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 15 |
6 13 14
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 16 |
10 15
|
eqtr3d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |