Metamath Proof Explorer


Theorem dochsncom

Description: Swap vectors in an orthocomplement of a singleton. (Contributed by NM, 17-Jun-2015)

Ref Expression
Hypotheses dochsncom.h 𝐻 = ( LHyp ‘ 𝐾 )
dochsncom.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochsncom.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochsncom.v 𝑉 = ( Base ‘ 𝑈 )
dochsncom.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochsncom.x ( 𝜑𝑋𝑉 )
dochsncom.y ( 𝜑𝑌𝑉 )
Assertion dochsncom ( 𝜑 → ( 𝑋 ∈ ( ‘ { 𝑌 } ) ↔ 𝑌 ∈ ( ‘ { 𝑋 } ) ) )

Proof

Step Hyp Ref Expression
1 dochsncom.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochsncom.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 dochsncom.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochsncom.v 𝑉 = ( Base ‘ 𝑈 )
5 dochsncom.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 dochsncom.x ( 𝜑𝑋𝑉 )
7 dochsncom.y ( 𝜑𝑌𝑉 )
8 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
9 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
10 1 3 4 9 8 dihlsprn ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
11 5 6 10 syl2anc ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
12 1 3 4 9 8 dihlsprn ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉 ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
13 5 7 12 syl2anc ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
14 1 8 2 5 11 13 dochord3 ( 𝜑 → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ⊆ ( ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ⊆ ( ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) ) )
15 7 snssd ( 𝜑 → { 𝑌 } ⊆ 𝑉 )
16 1 3 2 4 9 5 15 dochocsp ( 𝜑 → ( ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) = ( ‘ { 𝑌 } ) )
17 16 sseq2d ( 𝜑 → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ⊆ ( ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ⊆ ( ‘ { 𝑌 } ) ) )
18 6 snssd ( 𝜑 → { 𝑋 } ⊆ 𝑉 )
19 1 3 2 4 9 5 18 dochocsp ( 𝜑 → ( ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = ( ‘ { 𝑋 } ) )
20 19 sseq2d ( 𝜑 → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ⊆ ( ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ⊆ ( ‘ { 𝑋 } ) ) )
21 14 17 20 3bitr3d ( 𝜑 → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ⊆ ( ‘ { 𝑌 } ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ⊆ ( ‘ { 𝑋 } ) ) )
22 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
23 1 3 5 dvhlmod ( 𝜑𝑈 ∈ LMod )
24 1 3 4 22 2 dochlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ { 𝑌 } ⊆ 𝑉 ) → ( ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) )
25 5 15 24 syl2anc ( 𝜑 → ( ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) )
26 4 22 9 23 25 6 lspsnel5 ( 𝜑 → ( 𝑋 ∈ ( ‘ { 𝑌 } ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ⊆ ( ‘ { 𝑌 } ) ) )
27 1 3 4 22 2 dochlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ { 𝑋 } ⊆ 𝑉 ) → ( ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) )
28 5 18 27 syl2anc ( 𝜑 → ( ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) )
29 4 22 9 23 28 7 lspsnel5 ( 𝜑 → ( 𝑌 ∈ ( ‘ { 𝑋 } ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ⊆ ( ‘ { 𝑋 } ) ) )
30 21 26 29 3bitr4d ( 𝜑 → ( 𝑋 ∈ ( ‘ { 𝑌 } ) ↔ 𝑌 ∈ ( ‘ { 𝑋 } ) ) )