| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochsncom.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochsncom.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochsncom.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochsncom.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
dochsncom.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 6 |
|
dochsncom.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 7 |
|
dochsncom.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 8 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
| 10 |
1 3 4 9 8
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 11 |
5 6 10
|
syl2anc |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 12 |
1 3 4 9 8
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝑉 ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 13 |
5 7 12
|
syl2anc |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 14 |
1 8 2 5 11 13
|
dochord3 |
⊢ ( 𝜑 → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ⊆ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) ) ) |
| 15 |
7
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
| 16 |
1 3 2 4 9 5 15
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 17 |
16
|
sseq2d |
⊢ ( 𝜑 → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ { 𝑌 } ) ) ) |
| 18 |
6
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
| 19 |
1 3 2 4 9 5 18
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 20 |
19
|
sseq2d |
⊢ ( 𝜑 → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ⊆ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ⊆ ( ⊥ ‘ { 𝑋 } ) ) ) |
| 21 |
14 17 20
|
3bitr3d |
⊢ ( 𝜑 → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ { 𝑌 } ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ⊆ ( ⊥ ‘ { 𝑋 } ) ) ) |
| 22 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 23 |
1 3 5
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 24 |
1 3 4 22 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑌 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 25 |
5 15 24
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 26 |
4 22 9 23 25 6
|
ellspsn5b |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ⊥ ‘ { 𝑌 } ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ { 𝑌 } ) ) ) |
| 27 |
1 3 4 22 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑋 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 28 |
5 18 27
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 29 |
4 22 9 23 28 7
|
ellspsn5b |
⊢ ( 𝜑 → ( 𝑌 ∈ ( ⊥ ‘ { 𝑋 } ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ⊆ ( ⊥ ‘ { 𝑋 } ) ) ) |
| 30 |
21 26 29
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ⊥ ‘ { 𝑌 } ) ↔ 𝑌 ∈ ( ⊥ ‘ { 𝑋 } ) ) ) |