| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dochsncom.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | dochsncom.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | dochsncom.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | dochsncom.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | dochsncom.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 6 |  | dochsncom.x |  |-  ( ph -> X e. V ) | 
						
							| 7 |  | dochsncom.y |  |-  ( ph -> Y e. V ) | 
						
							| 8 |  | eqid |  |-  ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) | 
						
							| 9 |  | eqid |  |-  ( LSpan ` U ) = ( LSpan ` U ) | 
						
							| 10 | 1 3 4 9 8 | dihlsprn |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. V ) -> ( ( LSpan ` U ) ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 11 | 5 6 10 | syl2anc |  |-  ( ph -> ( ( LSpan ` U ) ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 12 | 1 3 4 9 8 | dihlsprn |  |-  ( ( ( K e. HL /\ W e. H ) /\ Y e. V ) -> ( ( LSpan ` U ) ` { Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 13 | 5 7 12 | syl2anc |  |-  ( ph -> ( ( LSpan ` U ) ` { Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 14 | 1 8 2 5 11 13 | dochord3 |  |-  ( ph -> ( ( ( LSpan ` U ) ` { X } ) C_ ( ._|_ ` ( ( LSpan ` U ) ` { Y } ) ) <-> ( ( LSpan ` U ) ` { Y } ) C_ ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) ) ) | 
						
							| 15 | 7 | snssd |  |-  ( ph -> { Y } C_ V ) | 
						
							| 16 | 1 3 2 4 9 5 15 | dochocsp |  |-  ( ph -> ( ._|_ ` ( ( LSpan ` U ) ` { Y } ) ) = ( ._|_ ` { Y } ) ) | 
						
							| 17 | 16 | sseq2d |  |-  ( ph -> ( ( ( LSpan ` U ) ` { X } ) C_ ( ._|_ ` ( ( LSpan ` U ) ` { Y } ) ) <-> ( ( LSpan ` U ) ` { X } ) C_ ( ._|_ ` { Y } ) ) ) | 
						
							| 18 | 6 | snssd |  |-  ( ph -> { X } C_ V ) | 
						
							| 19 | 1 3 2 4 9 5 18 | dochocsp |  |-  ( ph -> ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) = ( ._|_ ` { X } ) ) | 
						
							| 20 | 19 | sseq2d |  |-  ( ph -> ( ( ( LSpan ` U ) ` { Y } ) C_ ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) <-> ( ( LSpan ` U ) ` { Y } ) C_ ( ._|_ ` { X } ) ) ) | 
						
							| 21 | 14 17 20 | 3bitr3d |  |-  ( ph -> ( ( ( LSpan ` U ) ` { X } ) C_ ( ._|_ ` { Y } ) <-> ( ( LSpan ` U ) ` { Y } ) C_ ( ._|_ ` { X } ) ) ) | 
						
							| 22 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 23 | 1 3 5 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 24 | 1 3 4 22 2 | dochlss |  |-  ( ( ( K e. HL /\ W e. H ) /\ { Y } C_ V ) -> ( ._|_ ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 25 | 5 15 24 | syl2anc |  |-  ( ph -> ( ._|_ ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 26 | 4 22 9 23 25 6 | ellspsn5b |  |-  ( ph -> ( X e. ( ._|_ ` { Y } ) <-> ( ( LSpan ` U ) ` { X } ) C_ ( ._|_ ` { Y } ) ) ) | 
						
							| 27 | 1 3 4 22 2 | dochlss |  |-  ( ( ( K e. HL /\ W e. H ) /\ { X } C_ V ) -> ( ._|_ ` { X } ) e. ( LSubSp ` U ) ) | 
						
							| 28 | 5 18 27 | syl2anc |  |-  ( ph -> ( ._|_ ` { X } ) e. ( LSubSp ` U ) ) | 
						
							| 29 | 4 22 9 23 28 7 | ellspsn5b |  |-  ( ph -> ( Y e. ( ._|_ ` { X } ) <-> ( ( LSpan ` U ) ` { Y } ) C_ ( ._|_ ` { X } ) ) ) | 
						
							| 30 | 21 26 29 | 3bitr4d |  |-  ( ph -> ( X e. ( ._|_ ` { Y } ) <-> Y e. ( ._|_ ` { X } ) ) ) |