Metamath Proof Explorer


Theorem dochsncom

Description: Swap vectors in an orthocomplement of a singleton. (Contributed by NM, 17-Jun-2015)

Ref Expression
Hypotheses dochsncom.h H=LHypK
dochsncom.o ˙=ocHKW
dochsncom.u U=DVecHKW
dochsncom.v V=BaseU
dochsncom.k φKHLWH
dochsncom.x φXV
dochsncom.y φYV
Assertion dochsncom φX˙YY˙X

Proof

Step Hyp Ref Expression
1 dochsncom.h H=LHypK
2 dochsncom.o ˙=ocHKW
3 dochsncom.u U=DVecHKW
4 dochsncom.v V=BaseU
5 dochsncom.k φKHLWH
6 dochsncom.x φXV
7 dochsncom.y φYV
8 eqid DIsoHKW=DIsoHKW
9 eqid LSpanU=LSpanU
10 1 3 4 9 8 dihlsprn KHLWHXVLSpanUXranDIsoHKW
11 5 6 10 syl2anc φLSpanUXranDIsoHKW
12 1 3 4 9 8 dihlsprn KHLWHYVLSpanUYranDIsoHKW
13 5 7 12 syl2anc φLSpanUYranDIsoHKW
14 1 8 2 5 11 13 dochord3 φLSpanUX˙LSpanUYLSpanUY˙LSpanUX
15 7 snssd φYV
16 1 3 2 4 9 5 15 dochocsp φ˙LSpanUY=˙Y
17 16 sseq2d φLSpanUX˙LSpanUYLSpanUX˙Y
18 6 snssd φXV
19 1 3 2 4 9 5 18 dochocsp φ˙LSpanUX=˙X
20 19 sseq2d φLSpanUY˙LSpanUXLSpanUY˙X
21 14 17 20 3bitr3d φLSpanUX˙YLSpanUY˙X
22 eqid LSubSpU=LSubSpU
23 1 3 5 dvhlmod φULMod
24 1 3 4 22 2 dochlss KHLWHYV˙YLSubSpU
25 5 15 24 syl2anc φ˙YLSubSpU
26 4 22 9 23 25 6 lspsnel5 φX˙YLSpanUX˙Y
27 1 3 4 22 2 dochlss KHLWHXV˙XLSubSpU
28 5 18 27 syl2anc φ˙XLSubSpU
29 4 22 9 23 28 7 lspsnel5 φY˙XLSpanUY˙X
30 21 26 29 3bitr4d φX˙YY˙X