Metamath Proof Explorer


Theorem dochocsn

Description: The double orthocomplement of a singleton is its span. (Contributed by NM, 13-Jan-2015)

Ref Expression
Hypotheses dochocsn.h H=LHypK
dochocsn.u U=DVecHKW
dochocsn.o ˙=ocHKW
dochocsn.v V=BaseU
dochocsn.n N=LSpanU
dochocsn.k φKHLWH
dochocsn.x φXV
Assertion dochocsn φ˙˙X=NX

Proof

Step Hyp Ref Expression
1 dochocsn.h H=LHypK
2 dochocsn.u U=DVecHKW
3 dochocsn.o ˙=ocHKW
4 dochocsn.v V=BaseU
5 dochocsn.n N=LSpanU
6 dochocsn.k φKHLWH
7 dochocsn.x φXV
8 7 snssd φXV
9 1 2 3 4 5 6 8 dochocsp φ˙NX=˙X
10 9 fveq2d φ˙˙NX=˙˙X
11 eqid DIsoHKW=DIsoHKW
12 1 2 4 5 11 dihlsprn KHLWHXVNXranDIsoHKW
13 6 7 12 syl2anc φNXranDIsoHKW
14 1 11 3 dochoc KHLWHNXranDIsoHKW˙˙NX=NX
15 6 13 14 syl2anc φ˙˙NX=NX
16 10 15 eqtr3d φ˙˙X=NX