Metamath Proof Explorer


Theorem dochocsn

Description: The double orthocomplement of a singleton is its span. (Contributed by NM, 13-Jan-2015)

Ref Expression
Hypotheses dochocsn.h H = LHyp K
dochocsn.u U = DVecH K W
dochocsn.o ˙ = ocH K W
dochocsn.v V = Base U
dochocsn.n N = LSpan U
dochocsn.k φ K HL W H
dochocsn.x φ X V
Assertion dochocsn φ ˙ ˙ X = N X

Proof

Step Hyp Ref Expression
1 dochocsn.h H = LHyp K
2 dochocsn.u U = DVecH K W
3 dochocsn.o ˙ = ocH K W
4 dochocsn.v V = Base U
5 dochocsn.n N = LSpan U
6 dochocsn.k φ K HL W H
7 dochocsn.x φ X V
8 7 snssd φ X V
9 1 2 3 4 5 6 8 dochocsp φ ˙ N X = ˙ X
10 9 fveq2d φ ˙ ˙ N X = ˙ ˙ X
11 eqid DIsoH K W = DIsoH K W
12 1 2 4 5 11 dihlsprn K HL W H X V N X ran DIsoH K W
13 6 7 12 syl2anc φ N X ran DIsoH K W
14 1 11 3 dochoc K HL W H N X ran DIsoH K W ˙ ˙ N X = N X
15 6 13 14 syl2anc φ ˙ ˙ N X = N X
16 10 15 eqtr3d φ ˙ ˙ X = N X