| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2x.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 2 |
|
lclkrlem2x.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
lclkrlem2x.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lclkrlem2x.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
lclkrlem2x.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 6 |
|
lclkrlem2x.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 7 |
|
lclkrlem2x.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
| 8 |
|
lclkrlem2x.p |
⊢ + = ( +g ‘ 𝐷 ) |
| 9 |
|
lclkrlem2x.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
lclkrlem2x.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 11 |
|
lclkrlem2x.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 12 |
|
lclkrlem2x.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
| 13 |
|
lclkrlem2x.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 14 |
|
lclkrlem2x.le |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 15 |
|
lclkrlem2x.lg |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 16 |
|
df-ne |
⊢ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ↔ ¬ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 17 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
| 18 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
| 19 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑈 ) ) = ( .r ‘ ( Scalar ‘ 𝑈 ) ) |
| 20 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) |
| 21 |
|
eqid |
⊢ ( invr ‘ ( Scalar ‘ 𝑈 ) ) = ( invr ‘ ( Scalar ‘ 𝑈 ) ) |
| 22 |
|
eqid |
⊢ ( -g ‘ 𝑈 ) = ( -g ‘ 𝑈 ) |
| 23 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝑋 ∈ 𝑉 ) |
| 24 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝑌 ∈ 𝑉 ) |
| 25 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝐸 ∈ 𝐹 ) |
| 26 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝐺 ∈ 𝐹 ) |
| 27 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
| 28 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
| 29 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 30 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 31 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 32 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 33 |
5 17 18 19 20 21 22 6 7 8 23 24 25 26 27 1 2 3 4 28 29 30 31 32
|
lclkrlem2u |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 34 |
16 33
|
sylan2br |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 35 |
|
df-ne |
⊢ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ↔ ¬ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 36 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝑋 ∈ 𝑉 ) |
| 37 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝑌 ∈ 𝑉 ) |
| 38 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝐸 ∈ 𝐹 ) |
| 39 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝐺 ∈ 𝐹 ) |
| 40 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 41 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 42 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 43 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 44 |
5 17 18 19 20 21 22 6 7 8 36 37 38 39 27 1 2 3 4 28 40 41 42 43
|
lclkrlem2t |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 45 |
35 44
|
sylan2br |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 46 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → 𝑋 ∈ 𝑉 ) |
| 47 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → 𝑌 ∈ 𝑉 ) |
| 48 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → 𝐸 ∈ 𝐹 ) |
| 49 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → 𝐺 ∈ 𝐹 ) |
| 50 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 51 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 52 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 53 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 54 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 55 |
5 17 18 19 20 21 22 6 7 8 46 47 48 49 27 1 2 3 4 28 50 51 52 53 54
|
lclkrlem2w |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 56 |
34 45 55
|
pm2.61dda |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |