| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2x.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 2 |  | lclkrlem2x.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 3 |  | lclkrlem2x.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | lclkrlem2x.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | lclkrlem2x.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 6 |  | lclkrlem2x.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 7 |  | lclkrlem2x.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 8 |  | lclkrlem2x.p | ⊢  +   =  ( +g ‘ 𝐷 ) | 
						
							| 9 |  | lclkrlem2x.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | lclkrlem2x.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 11 |  | lclkrlem2x.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 12 |  | lclkrlem2x.e | ⊢ ( 𝜑  →  𝐸  ∈  𝐹 ) | 
						
							| 13 |  | lclkrlem2x.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 14 |  | lclkrlem2x.le | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 15 |  | lclkrlem2x.lg | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 16 |  | df-ne | ⊢ ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) )  ↔  ¬  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 17 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑈 )  =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 18 |  | eqid | ⊢ ( Scalar ‘ 𝑈 )  =  ( Scalar ‘ 𝑈 ) | 
						
							| 19 |  | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑈 ) )  =  ( .r ‘ ( Scalar ‘ 𝑈 ) ) | 
						
							| 20 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑈 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) | 
						
							| 21 |  | eqid | ⊢ ( invr ‘ ( Scalar ‘ 𝑈 ) )  =  ( invr ‘ ( Scalar ‘ 𝑈 ) ) | 
						
							| 22 |  | eqid | ⊢ ( -g ‘ 𝑈 )  =  ( -g ‘ 𝑈 ) | 
						
							| 23 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 24 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 25 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  𝐸  ∈  𝐹 ) | 
						
							| 26 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  𝐺  ∈  𝐹 ) | 
						
							| 27 |  | eqid | ⊢ ( LSpan ‘ 𝑈 )  =  ( LSpan ‘ 𝑈 ) | 
						
							| 28 |  | eqid | ⊢ ( LSSum ‘ 𝑈 )  =  ( LSSum ‘ 𝑈 ) | 
						
							| 29 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 30 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 31 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 32 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 33 | 5 17 18 19 20 21 22 6 7 8 23 24 25 26 27 1 2 3 4 28 29 30 31 32 | lclkrlem2u | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 34 | 16 33 | sylan2br | ⊢ ( ( 𝜑  ∧  ¬  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 35 |  | df-ne | ⊢ ( ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) )  ↔  ¬  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 36 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 37 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 38 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  𝐸  ∈  𝐹 ) | 
						
							| 39 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  𝐺  ∈  𝐹 ) | 
						
							| 40 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 41 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 42 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 43 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 44 | 5 17 18 19 20 21 22 6 7 8 36 37 38 39 27 1 2 3 4 28 40 41 42 43 | lclkrlem2t | ⊢ ( ( 𝜑  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  ≠  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 45 | 35 44 | sylan2br | ⊢ ( ( 𝜑  ∧  ¬  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 46 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) )  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 47 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) )  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 48 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) )  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) )  →  𝐸  ∈  𝐹 ) | 
						
							| 49 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) )  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) )  →  𝐺  ∈  𝐹 ) | 
						
							| 50 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) )  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 51 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) )  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) )  →  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 52 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) )  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) )  →  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 53 |  | simprl | ⊢ ( ( 𝜑  ∧  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) )  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) )  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 54 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) )  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) )  →  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 55 | 5 17 18 19 20 21 22 6 7 8 46 47 48 49 27 1 2 3 4 28 50 51 52 53 54 | lclkrlem2w | ⊢ ( ( 𝜑  ∧  ( ( ( 𝐸  +  𝐺 ) ‘ 𝑋 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) )  ∧  ( ( 𝐸  +  𝐺 ) ‘ 𝑌 )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 56 | 34 45 55 | pm2.61dda | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) |