Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2x.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
2 |
|
lclkrlem2x.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
lclkrlem2x.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lclkrlem2x.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
lclkrlem2x.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
6 |
|
lclkrlem2x.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
7 |
|
lclkrlem2x.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
8 |
|
lclkrlem2x.p |
⊢ + = ( +g ‘ 𝐷 ) |
9 |
|
lclkrlem2x.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lclkrlem2x.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
11 |
|
lclkrlem2x.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
12 |
|
lclkrlem2x.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
13 |
|
lclkrlem2x.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
14 |
|
lclkrlem2x.le |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
15 |
|
lclkrlem2x.lg |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
16 |
|
df-ne |
⊢ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ↔ ¬ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) |
17 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
18 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
19 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑈 ) ) = ( .r ‘ ( Scalar ‘ 𝑈 ) ) |
20 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) |
21 |
|
eqid |
⊢ ( invr ‘ ( Scalar ‘ 𝑈 ) ) = ( invr ‘ ( Scalar ‘ 𝑈 ) ) |
22 |
|
eqid |
⊢ ( -g ‘ 𝑈 ) = ( -g ‘ 𝑈 ) |
23 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝑋 ∈ 𝑉 ) |
24 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝑌 ∈ 𝑉 ) |
25 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝐸 ∈ 𝐹 ) |
26 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝐺 ∈ 𝐹 ) |
27 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
28 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
29 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
30 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
31 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) |
33 |
5 17 18 19 20 21 22 6 7 8 23 24 25 26 27 1 2 3 4 28 29 30 31 32
|
lclkrlem2u |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
34 |
16 33
|
sylan2br |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
35 |
|
df-ne |
⊢ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ↔ ¬ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) |
36 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝑋 ∈ 𝑉 ) |
37 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝑌 ∈ 𝑉 ) |
38 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝐸 ∈ 𝐹 ) |
39 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝐺 ∈ 𝐹 ) |
40 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
41 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
42 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
43 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) |
44 |
5 17 18 19 20 21 22 6 7 8 36 37 38 39 27 1 2 3 4 28 40 41 42 43
|
lclkrlem2t |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
45 |
35 44
|
sylan2br |
⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
46 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → 𝑋 ∈ 𝑉 ) |
47 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → 𝑌 ∈ 𝑉 ) |
48 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → 𝐸 ∈ 𝐹 ) |
49 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → 𝐺 ∈ 𝐹 ) |
50 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
51 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
52 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
53 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) |
54 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) |
55 |
5 17 18 19 20 21 22 6 7 8 46 47 48 49 27 1 2 3 4 28 50 51 52 53 54
|
lclkrlem2w |
⊢ ( ( 𝜑 ∧ ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
56 |
34 45 55
|
pm2.61dda |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |