| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2m.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 2 |
|
lclkrlem2m.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
| 3 |
|
lclkrlem2m.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
| 4 |
|
lclkrlem2m.q |
⊢ × = ( .r ‘ 𝑆 ) |
| 5 |
|
lclkrlem2m.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
| 6 |
|
lclkrlem2m.i |
⊢ 𝐼 = ( invr ‘ 𝑆 ) |
| 7 |
|
lclkrlem2m.m |
⊢ − = ( -g ‘ 𝑈 ) |
| 8 |
|
lclkrlem2m.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 9 |
|
lclkrlem2m.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
| 10 |
|
lclkrlem2m.p |
⊢ + = ( +g ‘ 𝐷 ) |
| 11 |
|
lclkrlem2m.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 12 |
|
lclkrlem2m.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 13 |
|
lclkrlem2m.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
| 14 |
|
lclkrlem2m.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 15 |
|
lclkrlem2n.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 16 |
|
lclkrlem2n.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 17 |
|
lclkrlem2o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 18 |
|
lclkrlem2o.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 19 |
|
lclkrlem2o.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 20 |
|
lclkrlem2o.a |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 21 |
|
lclkrlem2o.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 22 |
|
lclkrlem2q.le |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 23 |
|
lclkrlem2q.lg |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 24 |
|
lclkrlem2t.n |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 ) |
| 25 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g ‘ 𝑈 ) ) → 𝑋 ∈ 𝑉 ) |
| 26 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g ‘ 𝑈 ) ) → 𝑌 ∈ 𝑉 ) |
| 27 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g ‘ 𝑈 ) ) → 𝐸 ∈ 𝐹 ) |
| 28 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g ‘ 𝑈 ) ) → 𝐺 ∈ 𝐹 ) |
| 29 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 30 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 31 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 32 |
|
eqid |
⊢ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) |
| 33 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g ‘ 𝑈 ) ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 ) |
| 34 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g ‘ 𝑈 ) ) → ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g ‘ 𝑈 ) ) |
| 35 |
1 2 3 4 5 6 7 8 9 10 25 26 27 28 15 16 17 18 19 20 29 30 31 32 33 34
|
lclkrlem2s |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) = ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 36 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ≠ ( 0g ‘ 𝑈 ) ) → 𝑋 ∈ 𝑉 ) |
| 37 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ≠ ( 0g ‘ 𝑈 ) ) → 𝑌 ∈ 𝑉 ) |
| 38 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ≠ ( 0g ‘ 𝑈 ) ) → 𝐸 ∈ 𝐹 ) |
| 39 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ≠ ( 0g ‘ 𝑈 ) ) → 𝐺 ∈ 𝐹 ) |
| 40 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 41 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 42 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 43 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ≠ ( 0g ‘ 𝑈 ) ) → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 ) |
| 44 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ≠ ( 0g ‘ 𝑈 ) ) |
| 45 |
1 2 3 4 5 6 7 8 9 10 36 37 38 39 15 16 17 18 19 20 40 41 42 32 43 44
|
lclkrlem2q |
⊢ ( ( 𝜑 ∧ ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) ≠ ( 0g ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 46 |
35 45
|
pm2.61dane |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |