Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2m.v |
|
2 |
|
lclkrlem2m.t |
|
3 |
|
lclkrlem2m.s |
|
4 |
|
lclkrlem2m.q |
|
5 |
|
lclkrlem2m.z |
|
6 |
|
lclkrlem2m.i |
|
7 |
|
lclkrlem2m.m |
|
8 |
|
lclkrlem2m.f |
|
9 |
|
lclkrlem2m.d |
|
10 |
|
lclkrlem2m.p |
|
11 |
|
lclkrlem2m.x |
|
12 |
|
lclkrlem2m.y |
|
13 |
|
lclkrlem2m.e |
|
14 |
|
lclkrlem2m.g |
|
15 |
|
lclkrlem2n.n |
|
16 |
|
lclkrlem2n.l |
|
17 |
|
lclkrlem2o.h |
|
18 |
|
lclkrlem2o.o |
|
19 |
|
lclkrlem2o.u |
|
20 |
|
lclkrlem2o.a |
|
21 |
|
lclkrlem2o.k |
|
22 |
|
lclkrlem2q.le |
|
23 |
|
lclkrlem2q.lg |
|
24 |
|
lclkrlem2t.n |
|
25 |
11
|
adantr |
|
26 |
12
|
adantr |
|
27 |
13
|
adantr |
|
28 |
14
|
adantr |
|
29 |
21
|
adantr |
|
30 |
22
|
adantr |
|
31 |
23
|
adantr |
|
32 |
|
eqid |
|
33 |
24
|
adantr |
|
34 |
|
simpr |
|
35 |
1 2 3 4 5 6 7 8 9 10 25 26 27 28 15 16 17 18 19 20 29 30 31 32 33 34
|
lclkrlem2s |
|
36 |
11
|
adantr |
|
37 |
12
|
adantr |
|
38 |
13
|
adantr |
|
39 |
14
|
adantr |
|
40 |
21
|
adantr |
|
41 |
22
|
adantr |
|
42 |
23
|
adantr |
|
43 |
24
|
adantr |
|
44 |
|
simpr |
|
45 |
1 2 3 4 5 6 7 8 9 10 36 37 38 39 15 16 17 18 19 20 40 41 42 32 43 44
|
lclkrlem2q |
|
46 |
35 45
|
pm2.61dane |
|