Metamath Proof Explorer


Theorem lclkrlem2u

Description: Lemma for lclkr . lclkrlem2t with X and Y swapped. (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v V=BaseU
lclkrlem2m.t ·˙=U
lclkrlem2m.s S=ScalarU
lclkrlem2m.q ×˙=S
lclkrlem2m.z 0˙=0S
lclkrlem2m.i I=invrS
lclkrlem2m.m -˙=-U
lclkrlem2m.f F=LFnlU
lclkrlem2m.d D=LDualU
lclkrlem2m.p +˙=+D
lclkrlem2m.x φXV
lclkrlem2m.y φYV
lclkrlem2m.e φEF
lclkrlem2m.g φGF
lclkrlem2n.n N=LSpanU
lclkrlem2n.l L=LKerU
lclkrlem2o.h H=LHypK
lclkrlem2o.o ˙=ocHKW
lclkrlem2o.u U=DVecHKW
lclkrlem2o.a ˙=LSSumU
lclkrlem2o.k φKHLWH
lclkrlem2q.le φLE=˙X
lclkrlem2q.lg φLG=˙Y
lclkrlem2u.n φE+˙GX0˙
Assertion lclkrlem2u φ˙˙LE+˙G=LE+˙G

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v V=BaseU
2 lclkrlem2m.t ·˙=U
3 lclkrlem2m.s S=ScalarU
4 lclkrlem2m.q ×˙=S
5 lclkrlem2m.z 0˙=0S
6 lclkrlem2m.i I=invrS
7 lclkrlem2m.m -˙=-U
8 lclkrlem2m.f F=LFnlU
9 lclkrlem2m.d D=LDualU
10 lclkrlem2m.p +˙=+D
11 lclkrlem2m.x φXV
12 lclkrlem2m.y φYV
13 lclkrlem2m.e φEF
14 lclkrlem2m.g φGF
15 lclkrlem2n.n N=LSpanU
16 lclkrlem2n.l L=LKerU
17 lclkrlem2o.h H=LHypK
18 lclkrlem2o.o ˙=ocHKW
19 lclkrlem2o.u U=DVecHKW
20 lclkrlem2o.a ˙=LSSumU
21 lclkrlem2o.k φKHLWH
22 lclkrlem2q.le φLE=˙X
23 lclkrlem2q.lg φLG=˙Y
24 lclkrlem2u.n φE+˙GX0˙
25 17 19 21 dvhlmod φULMod
26 8 9 10 25 13 14 ldualvaddcom φE+˙G=G+˙E
27 26 fveq1d φE+˙GX=G+˙EX
28 27 24 eqnetrrd φG+˙EX0˙
29 1 2 3 4 5 6 7 8 9 10 12 11 14 13 15 16 17 18 19 20 21 23 22 28 lclkrlem2t φ˙˙LG+˙E=LG+˙E
30 26 fveq2d φLE+˙G=LG+˙E
31 30 fveq2d φ˙LE+˙G=˙LG+˙E
32 31 fveq2d φ˙˙LE+˙G=˙˙LG+˙E
33 29 32 30 3eqtr4d φ˙˙LE+˙G=LE+˙G