Metamath Proof Explorer


Theorem lclkrlem2u

Description: Lemma for lclkr . lclkrlem2t with X and Y swapped. (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v V = Base U
lclkrlem2m.t · ˙ = U
lclkrlem2m.s S = Scalar U
lclkrlem2m.q × ˙ = S
lclkrlem2m.z 0 ˙ = 0 S
lclkrlem2m.i I = inv r S
lclkrlem2m.m - ˙ = - U
lclkrlem2m.f F = LFnl U
lclkrlem2m.d D = LDual U
lclkrlem2m.p + ˙ = + D
lclkrlem2m.x φ X V
lclkrlem2m.y φ Y V
lclkrlem2m.e φ E F
lclkrlem2m.g φ G F
lclkrlem2n.n N = LSpan U
lclkrlem2n.l L = LKer U
lclkrlem2o.h H = LHyp K
lclkrlem2o.o ˙ = ocH K W
lclkrlem2o.u U = DVecH K W
lclkrlem2o.a ˙ = LSSum U
lclkrlem2o.k φ K HL W H
lclkrlem2q.le φ L E = ˙ X
lclkrlem2q.lg φ L G = ˙ Y
lclkrlem2u.n φ E + ˙ G X 0 ˙
Assertion lclkrlem2u φ ˙ ˙ L E + ˙ G = L E + ˙ G

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v V = Base U
2 lclkrlem2m.t · ˙ = U
3 lclkrlem2m.s S = Scalar U
4 lclkrlem2m.q × ˙ = S
5 lclkrlem2m.z 0 ˙ = 0 S
6 lclkrlem2m.i I = inv r S
7 lclkrlem2m.m - ˙ = - U
8 lclkrlem2m.f F = LFnl U
9 lclkrlem2m.d D = LDual U
10 lclkrlem2m.p + ˙ = + D
11 lclkrlem2m.x φ X V
12 lclkrlem2m.y φ Y V
13 lclkrlem2m.e φ E F
14 lclkrlem2m.g φ G F
15 lclkrlem2n.n N = LSpan U
16 lclkrlem2n.l L = LKer U
17 lclkrlem2o.h H = LHyp K
18 lclkrlem2o.o ˙ = ocH K W
19 lclkrlem2o.u U = DVecH K W
20 lclkrlem2o.a ˙ = LSSum U
21 lclkrlem2o.k φ K HL W H
22 lclkrlem2q.le φ L E = ˙ X
23 lclkrlem2q.lg φ L G = ˙ Y
24 lclkrlem2u.n φ E + ˙ G X 0 ˙
25 17 19 21 dvhlmod φ U LMod
26 8 9 10 25 13 14 ldualvaddcom φ E + ˙ G = G + ˙ E
27 26 fveq1d φ E + ˙ G X = G + ˙ E X
28 27 24 eqnetrrd φ G + ˙ E X 0 ˙
29 1 2 3 4 5 6 7 8 9 10 12 11 14 13 15 16 17 18 19 20 21 23 22 28 lclkrlem2t φ ˙ ˙ L G + ˙ E = L G + ˙ E
30 26 fveq2d φ L E + ˙ G = L G + ˙ E
31 30 fveq2d φ ˙ L E + ˙ G = ˙ L G + ˙ E
32 31 fveq2d φ ˙ ˙ L E + ˙ G = ˙ ˙ L G + ˙ E
33 29 32 30 3eqtr4d φ ˙ ˙ L E + ˙ G = L E + ˙ G