Metamath Proof Explorer


Theorem lclkrlem2u

Description: Lemma for lclkr . lclkrlem2t with X and Y swapped. (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v
|- V = ( Base ` U )
lclkrlem2m.t
|- .x. = ( .s ` U )
lclkrlem2m.s
|- S = ( Scalar ` U )
lclkrlem2m.q
|- .X. = ( .r ` S )
lclkrlem2m.z
|- .0. = ( 0g ` S )
lclkrlem2m.i
|- I = ( invr ` S )
lclkrlem2m.m
|- .- = ( -g ` U )
lclkrlem2m.f
|- F = ( LFnl ` U )
lclkrlem2m.d
|- D = ( LDual ` U )
lclkrlem2m.p
|- .+ = ( +g ` D )
lclkrlem2m.x
|- ( ph -> X e. V )
lclkrlem2m.y
|- ( ph -> Y e. V )
lclkrlem2m.e
|- ( ph -> E e. F )
lclkrlem2m.g
|- ( ph -> G e. F )
lclkrlem2n.n
|- N = ( LSpan ` U )
lclkrlem2n.l
|- L = ( LKer ` U )
lclkrlem2o.h
|- H = ( LHyp ` K )
lclkrlem2o.o
|- ._|_ = ( ( ocH ` K ) ` W )
lclkrlem2o.u
|- U = ( ( DVecH ` K ) ` W )
lclkrlem2o.a
|- .(+) = ( LSSum ` U )
lclkrlem2o.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lclkrlem2q.le
|- ( ph -> ( L ` E ) = ( ._|_ ` { X } ) )
lclkrlem2q.lg
|- ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) )
lclkrlem2u.n
|- ( ph -> ( ( E .+ G ) ` X ) =/= .0. )
Assertion lclkrlem2u
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) )

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v
 |-  V = ( Base ` U )
2 lclkrlem2m.t
 |-  .x. = ( .s ` U )
3 lclkrlem2m.s
 |-  S = ( Scalar ` U )
4 lclkrlem2m.q
 |-  .X. = ( .r ` S )
5 lclkrlem2m.z
 |-  .0. = ( 0g ` S )
6 lclkrlem2m.i
 |-  I = ( invr ` S )
7 lclkrlem2m.m
 |-  .- = ( -g ` U )
8 lclkrlem2m.f
 |-  F = ( LFnl ` U )
9 lclkrlem2m.d
 |-  D = ( LDual ` U )
10 lclkrlem2m.p
 |-  .+ = ( +g ` D )
11 lclkrlem2m.x
 |-  ( ph -> X e. V )
12 lclkrlem2m.y
 |-  ( ph -> Y e. V )
13 lclkrlem2m.e
 |-  ( ph -> E e. F )
14 lclkrlem2m.g
 |-  ( ph -> G e. F )
15 lclkrlem2n.n
 |-  N = ( LSpan ` U )
16 lclkrlem2n.l
 |-  L = ( LKer ` U )
17 lclkrlem2o.h
 |-  H = ( LHyp ` K )
18 lclkrlem2o.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
19 lclkrlem2o.u
 |-  U = ( ( DVecH ` K ) ` W )
20 lclkrlem2o.a
 |-  .(+) = ( LSSum ` U )
21 lclkrlem2o.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
22 lclkrlem2q.le
 |-  ( ph -> ( L ` E ) = ( ._|_ ` { X } ) )
23 lclkrlem2q.lg
 |-  ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) )
24 lclkrlem2u.n
 |-  ( ph -> ( ( E .+ G ) ` X ) =/= .0. )
25 17 19 21 dvhlmod
 |-  ( ph -> U e. LMod )
26 8 9 10 25 13 14 ldualvaddcom
 |-  ( ph -> ( E .+ G ) = ( G .+ E ) )
27 26 fveq1d
 |-  ( ph -> ( ( E .+ G ) ` X ) = ( ( G .+ E ) ` X ) )
28 27 24 eqnetrrd
 |-  ( ph -> ( ( G .+ E ) ` X ) =/= .0. )
29 1 2 3 4 5 6 7 8 9 10 12 11 14 13 15 16 17 18 19 20 21 23 22 28 lclkrlem2t
 |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( G .+ E ) ) ) ) = ( L ` ( G .+ E ) ) )
30 26 fveq2d
 |-  ( ph -> ( L ` ( E .+ G ) ) = ( L ` ( G .+ E ) ) )
31 30 fveq2d
 |-  ( ph -> ( ._|_ ` ( L ` ( E .+ G ) ) ) = ( ._|_ ` ( L ` ( G .+ E ) ) ) )
32 31 fveq2d
 |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( ._|_ ` ( ._|_ ` ( L ` ( G .+ E ) ) ) ) )
33 29 32 30 3eqtr4d
 |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) )