| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2m.v |  |-  V = ( Base ` U ) | 
						
							| 2 |  | lclkrlem2m.t |  |-  .x. = ( .s ` U ) | 
						
							| 3 |  | lclkrlem2m.s |  |-  S = ( Scalar ` U ) | 
						
							| 4 |  | lclkrlem2m.q |  |-  .X. = ( .r ` S ) | 
						
							| 5 |  | lclkrlem2m.z |  |-  .0. = ( 0g ` S ) | 
						
							| 6 |  | lclkrlem2m.i |  |-  I = ( invr ` S ) | 
						
							| 7 |  | lclkrlem2m.m |  |-  .- = ( -g ` U ) | 
						
							| 8 |  | lclkrlem2m.f |  |-  F = ( LFnl ` U ) | 
						
							| 9 |  | lclkrlem2m.d |  |-  D = ( LDual ` U ) | 
						
							| 10 |  | lclkrlem2m.p |  |-  .+ = ( +g ` D ) | 
						
							| 11 |  | lclkrlem2m.x |  |-  ( ph -> X e. V ) | 
						
							| 12 |  | lclkrlem2m.y |  |-  ( ph -> Y e. V ) | 
						
							| 13 |  | lclkrlem2m.e |  |-  ( ph -> E e. F ) | 
						
							| 14 |  | lclkrlem2m.g |  |-  ( ph -> G e. F ) | 
						
							| 15 |  | lclkrlem2n.n |  |-  N = ( LSpan ` U ) | 
						
							| 16 |  | lclkrlem2n.l |  |-  L = ( LKer ` U ) | 
						
							| 17 |  | lclkrlem2o.h |  |-  H = ( LHyp ` K ) | 
						
							| 18 |  | lclkrlem2o.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 19 |  | lclkrlem2o.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 20 |  | lclkrlem2o.a |  |-  .(+) = ( LSSum ` U ) | 
						
							| 21 |  | lclkrlem2o.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 22 |  | lclkrlem2q.le |  |-  ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 23 |  | lclkrlem2q.lg |  |-  ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 24 |  | lclkrlem2u.n |  |-  ( ph -> ( ( E .+ G ) ` X ) =/= .0. ) | 
						
							| 25 | 17 19 21 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 26 | 8 9 10 25 13 14 | ldualvaddcom |  |-  ( ph -> ( E .+ G ) = ( G .+ E ) ) | 
						
							| 27 | 26 | fveq1d |  |-  ( ph -> ( ( E .+ G ) ` X ) = ( ( G .+ E ) ` X ) ) | 
						
							| 28 | 27 24 | eqnetrrd |  |-  ( ph -> ( ( G .+ E ) ` X ) =/= .0. ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 9 10 12 11 14 13 15 16 17 18 19 20 21 23 22 28 | lclkrlem2t |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( G .+ E ) ) ) ) = ( L ` ( G .+ E ) ) ) | 
						
							| 30 | 26 | fveq2d |  |-  ( ph -> ( L ` ( E .+ G ) ) = ( L ` ( G .+ E ) ) ) | 
						
							| 31 | 30 | fveq2d |  |-  ( ph -> ( ._|_ ` ( L ` ( E .+ G ) ) ) = ( ._|_ ` ( L ` ( G .+ E ) ) ) ) | 
						
							| 32 | 31 | fveq2d |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( ._|_ ` ( ._|_ ` ( L ` ( G .+ E ) ) ) ) ) | 
						
							| 33 | 29 32 30 | 3eqtr4d |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |