Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2m.v |
|- V = ( Base ` U ) |
2 |
|
lclkrlem2m.t |
|- .x. = ( .s ` U ) |
3 |
|
lclkrlem2m.s |
|- S = ( Scalar ` U ) |
4 |
|
lclkrlem2m.q |
|- .X. = ( .r ` S ) |
5 |
|
lclkrlem2m.z |
|- .0. = ( 0g ` S ) |
6 |
|
lclkrlem2m.i |
|- I = ( invr ` S ) |
7 |
|
lclkrlem2m.m |
|- .- = ( -g ` U ) |
8 |
|
lclkrlem2m.f |
|- F = ( LFnl ` U ) |
9 |
|
lclkrlem2m.d |
|- D = ( LDual ` U ) |
10 |
|
lclkrlem2m.p |
|- .+ = ( +g ` D ) |
11 |
|
lclkrlem2m.x |
|- ( ph -> X e. V ) |
12 |
|
lclkrlem2m.y |
|- ( ph -> Y e. V ) |
13 |
|
lclkrlem2m.e |
|- ( ph -> E e. F ) |
14 |
|
lclkrlem2m.g |
|- ( ph -> G e. F ) |
15 |
|
lclkrlem2n.n |
|- N = ( LSpan ` U ) |
16 |
|
lclkrlem2n.l |
|- L = ( LKer ` U ) |
17 |
|
lclkrlem2o.h |
|- H = ( LHyp ` K ) |
18 |
|
lclkrlem2o.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
19 |
|
lclkrlem2o.u |
|- U = ( ( DVecH ` K ) ` W ) |
20 |
|
lclkrlem2o.a |
|- .(+) = ( LSSum ` U ) |
21 |
|
lclkrlem2o.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
22 |
|
lclkrlem2q.le |
|- ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) |
23 |
|
lclkrlem2q.lg |
|- ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
24 |
|
lclkrlem2u.n |
|- ( ph -> ( ( E .+ G ) ` X ) =/= .0. ) |
25 |
17 19 21
|
dvhlmod |
|- ( ph -> U e. LMod ) |
26 |
8 9 10 25 13 14
|
ldualvaddcom |
|- ( ph -> ( E .+ G ) = ( G .+ E ) ) |
27 |
26
|
fveq1d |
|- ( ph -> ( ( E .+ G ) ` X ) = ( ( G .+ E ) ` X ) ) |
28 |
27 24
|
eqnetrrd |
|- ( ph -> ( ( G .+ E ) ` X ) =/= .0. ) |
29 |
1 2 3 4 5 6 7 8 9 10 12 11 14 13 15 16 17 18 19 20 21 23 22 28
|
lclkrlem2t |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( G .+ E ) ) ) ) = ( L ` ( G .+ E ) ) ) |
30 |
26
|
fveq2d |
|- ( ph -> ( L ` ( E .+ G ) ) = ( L ` ( G .+ E ) ) ) |
31 |
30
|
fveq2d |
|- ( ph -> ( ._|_ ` ( L ` ( E .+ G ) ) ) = ( ._|_ ` ( L ` ( G .+ E ) ) ) ) |
32 |
31
|
fveq2d |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( ._|_ ` ( ._|_ ` ( L ` ( G .+ E ) ) ) ) ) |
33 |
29 32 30
|
3eqtr4d |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |