| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2m.v |  |-  V = ( Base ` U ) | 
						
							| 2 |  | lclkrlem2m.t |  |-  .x. = ( .s ` U ) | 
						
							| 3 |  | lclkrlem2m.s |  |-  S = ( Scalar ` U ) | 
						
							| 4 |  | lclkrlem2m.q |  |-  .X. = ( .r ` S ) | 
						
							| 5 |  | lclkrlem2m.z |  |-  .0. = ( 0g ` S ) | 
						
							| 6 |  | lclkrlem2m.i |  |-  I = ( invr ` S ) | 
						
							| 7 |  | lclkrlem2m.m |  |-  .- = ( -g ` U ) | 
						
							| 8 |  | lclkrlem2m.f |  |-  F = ( LFnl ` U ) | 
						
							| 9 |  | lclkrlem2m.d |  |-  D = ( LDual ` U ) | 
						
							| 10 |  | lclkrlem2m.p |  |-  .+ = ( +g ` D ) | 
						
							| 11 |  | lclkrlem2m.x |  |-  ( ph -> X e. V ) | 
						
							| 12 |  | lclkrlem2m.y |  |-  ( ph -> Y e. V ) | 
						
							| 13 |  | lclkrlem2m.e |  |-  ( ph -> E e. F ) | 
						
							| 14 |  | lclkrlem2m.g |  |-  ( ph -> G e. F ) | 
						
							| 15 |  | lclkrlem2n.n |  |-  N = ( LSpan ` U ) | 
						
							| 16 |  | lclkrlem2n.l |  |-  L = ( LKer ` U ) | 
						
							| 17 |  | lclkrlem2o.h |  |-  H = ( LHyp ` K ) | 
						
							| 18 |  | lclkrlem2o.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 19 |  | lclkrlem2o.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 20 |  | lclkrlem2o.a |  |-  .(+) = ( LSSum ` U ) | 
						
							| 21 |  | lclkrlem2o.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 22 |  | lclkrlem2q.le |  |-  ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 23 |  | lclkrlem2q.lg |  |-  ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 24 |  | lclkrlem2t.n |  |-  ( ph -> ( ( E .+ G ) ` Y ) =/= .0. ) | 
						
							| 25 | 11 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) = ( 0g ` U ) ) -> X e. V ) | 
						
							| 26 | 12 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) = ( 0g ` U ) ) -> Y e. V ) | 
						
							| 27 | 13 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) = ( 0g ` U ) ) -> E e. F ) | 
						
							| 28 | 14 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) = ( 0g ` U ) ) -> G e. F ) | 
						
							| 29 | 21 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) = ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 30 | 22 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) = ( 0g ` U ) ) -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 31 | 23 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) = ( 0g ` U ) ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 32 |  | eqid |  |-  ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) = ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) | 
						
							| 33 | 24 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) = ( 0g ` U ) ) -> ( ( E .+ G ) ` Y ) =/= .0. ) | 
						
							| 34 |  | simpr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) = ( 0g ` U ) ) -> ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) = ( 0g ` U ) ) | 
						
							| 35 | 1 2 3 4 5 6 7 8 9 10 25 26 27 28 15 16 17 18 19 20 29 30 31 32 33 34 | lclkrlem2s |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) = ( 0g ` U ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 36 | 11 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) =/= ( 0g ` U ) ) -> X e. V ) | 
						
							| 37 | 12 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) =/= ( 0g ` U ) ) -> Y e. V ) | 
						
							| 38 | 13 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) =/= ( 0g ` U ) ) -> E e. F ) | 
						
							| 39 | 14 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) =/= ( 0g ` U ) ) -> G e. F ) | 
						
							| 40 | 21 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 41 | 22 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) =/= ( 0g ` U ) ) -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 42 | 23 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) =/= ( 0g ` U ) ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 43 | 24 | adantr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) =/= ( 0g ` U ) ) -> ( ( E .+ G ) ` Y ) =/= .0. ) | 
						
							| 44 |  | simpr |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) =/= ( 0g ` U ) ) -> ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) =/= ( 0g ` U ) ) | 
						
							| 45 | 1 2 3 4 5 6 7 8 9 10 36 37 38 39 15 16 17 18 19 20 40 41 42 32 43 44 | lclkrlem2q |  |-  ( ( ph /\ ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) =/= ( 0g ` U ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 46 | 35 45 | pm2.61dane |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |