| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2m.v |  |-  V = ( Base ` U ) | 
						
							| 2 |  | lclkrlem2m.t |  |-  .x. = ( .s ` U ) | 
						
							| 3 |  | lclkrlem2m.s |  |-  S = ( Scalar ` U ) | 
						
							| 4 |  | lclkrlem2m.q |  |-  .X. = ( .r ` S ) | 
						
							| 5 |  | lclkrlem2m.z |  |-  .0. = ( 0g ` S ) | 
						
							| 6 |  | lclkrlem2m.i |  |-  I = ( invr ` S ) | 
						
							| 7 |  | lclkrlem2m.m |  |-  .- = ( -g ` U ) | 
						
							| 8 |  | lclkrlem2m.f |  |-  F = ( LFnl ` U ) | 
						
							| 9 |  | lclkrlem2m.d |  |-  D = ( LDual ` U ) | 
						
							| 10 |  | lclkrlem2m.p |  |-  .+ = ( +g ` D ) | 
						
							| 11 |  | lclkrlem2m.x |  |-  ( ph -> X e. V ) | 
						
							| 12 |  | lclkrlem2m.y |  |-  ( ph -> Y e. V ) | 
						
							| 13 |  | lclkrlem2m.e |  |-  ( ph -> E e. F ) | 
						
							| 14 |  | lclkrlem2m.g |  |-  ( ph -> G e. F ) | 
						
							| 15 |  | lclkrlem2n.n |  |-  N = ( LSpan ` U ) | 
						
							| 16 |  | lclkrlem2n.l |  |-  L = ( LKer ` U ) | 
						
							| 17 |  | lclkrlem2o.h |  |-  H = ( LHyp ` K ) | 
						
							| 18 |  | lclkrlem2o.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 19 |  | lclkrlem2o.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 20 |  | lclkrlem2o.a |  |-  .(+) = ( LSSum ` U ) | 
						
							| 21 |  | lclkrlem2o.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 22 |  | lclkrlem2q.le |  |-  ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 23 |  | lclkrlem2q.lg |  |-  ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 24 |  | lclkrlem2q.b |  |-  B = ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) | 
						
							| 25 |  | lclkrlem2q.n |  |-  ( ph -> ( ( E .+ G ) ` Y ) =/= .0. ) | 
						
							| 26 |  | lclkrlem2r.bn |  |-  ( ph -> B = ( 0g ` U ) ) | 
						
							| 27 | 12 | snssd |  |-  ( ph -> { Y } C_ V ) | 
						
							| 28 |  | eqid |  |-  ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) | 
						
							| 29 | 17 28 19 1 18 | dochcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ { Y } C_ V ) -> ( ._|_ ` { Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 30 | 21 27 29 | syl2anc |  |-  ( ph -> ( ._|_ ` { Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 31 | 17 28 18 | dochoc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` { Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { Y } ) ) ) = ( ._|_ ` { Y } ) ) | 
						
							| 32 | 21 30 31 | syl2anc |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { Y } ) ) ) = ( ._|_ ` { Y } ) ) | 
						
							| 33 | 32 | ad2antrr |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { Y } ) ) ) = ( ._|_ ` { Y } ) ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | lclkrlem2r |  |-  ( ph -> ( L ` G ) C_ ( L ` ( E .+ G ) ) ) | 
						
							| 35 | 34 | ad2antrr |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` G ) C_ ( L ` ( E .+ G ) ) ) | 
						
							| 36 |  | eqid |  |-  ( LSHyp ` U ) = ( LSHyp ` U ) | 
						
							| 37 | 17 19 21 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 38 | 37 | ad2antrr |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> U e. LVec ) | 
						
							| 39 |  | simplr |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` G ) e. ( LSHyp ` U ) ) | 
						
							| 40 |  | simpr |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) | 
						
							| 41 | 36 38 39 40 | lshpcmp |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ( L ` G ) C_ ( L ` ( E .+ G ) ) <-> ( L ` G ) = ( L ` ( E .+ G ) ) ) ) | 
						
							| 42 | 35 41 | mpbid |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` G ) = ( L ` ( E .+ G ) ) ) | 
						
							| 43 | 23 | ad2antrr |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) | 
						
							| 44 | 42 43 | eqtr3d |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` ( E .+ G ) ) = ( ._|_ ` { Y } ) ) | 
						
							| 45 | 44 | fveq2d |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( L ` ( E .+ G ) ) ) = ( ._|_ ` ( ._|_ ` { Y } ) ) ) | 
						
							| 46 | 45 | fveq2d |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( ._|_ ` ( ._|_ ` ( ._|_ ` { Y } ) ) ) ) | 
						
							| 47 | 33 46 44 | 3eqtr4d |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 48 | 17 19 18 1 21 | dochoc1 |  |-  ( ph -> ( ._|_ ` ( ._|_ ` V ) ) = V ) | 
						
							| 49 | 48 | ad2antrr |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) = V ) -> ( ._|_ ` ( ._|_ ` V ) ) = V ) | 
						
							| 50 |  | simpr |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) = V ) -> ( L ` ( E .+ G ) ) = V ) | 
						
							| 51 | 50 | fveq2d |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) = V ) -> ( ._|_ ` ( L ` ( E .+ G ) ) ) = ( ._|_ ` V ) ) | 
						
							| 52 | 51 | fveq2d |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) = V ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( ._|_ ` ( ._|_ ` V ) ) ) | 
						
							| 53 | 49 52 50 | 3eqtr4d |  |-  ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) = V ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 54 | 17 19 21 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 55 | 8 9 10 54 13 14 | ldualvaddcl |  |-  ( ph -> ( E .+ G ) e. F ) | 
						
							| 56 | 1 36 8 16 37 55 | lkrshpor |  |-  ( ph -> ( ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) \/ ( L ` ( E .+ G ) ) = V ) ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) -> ( ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) \/ ( L ` ( E .+ G ) ) = V ) ) | 
						
							| 58 | 47 53 57 | mpjaodan |  |-  ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 59 | 48 | adantr |  |-  ( ( ph /\ ( L ` G ) = V ) -> ( ._|_ ` ( ._|_ ` V ) ) = V ) | 
						
							| 60 | 1 8 16 54 55 | lkrssv |  |-  ( ph -> ( L ` ( E .+ G ) ) C_ V ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ph /\ ( L ` G ) = V ) -> ( L ` ( E .+ G ) ) C_ V ) | 
						
							| 62 |  | simpr |  |-  ( ( ph /\ ( L ` G ) = V ) -> ( L ` G ) = V ) | 
						
							| 63 | 34 | adantr |  |-  ( ( ph /\ ( L ` G ) = V ) -> ( L ` G ) C_ ( L ` ( E .+ G ) ) ) | 
						
							| 64 | 62 63 | eqsstrrd |  |-  ( ( ph /\ ( L ` G ) = V ) -> V C_ ( L ` ( E .+ G ) ) ) | 
						
							| 65 | 61 64 | eqssd |  |-  ( ( ph /\ ( L ` G ) = V ) -> ( L ` ( E .+ G ) ) = V ) | 
						
							| 66 | 65 | fveq2d |  |-  ( ( ph /\ ( L ` G ) = V ) -> ( ._|_ ` ( L ` ( E .+ G ) ) ) = ( ._|_ ` V ) ) | 
						
							| 67 | 66 | fveq2d |  |-  ( ( ph /\ ( L ` G ) = V ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( ._|_ ` ( ._|_ ` V ) ) ) | 
						
							| 68 | 59 67 65 | 3eqtr4d |  |-  ( ( ph /\ ( L ` G ) = V ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 69 | 1 36 8 16 37 14 | lkrshpor |  |-  ( ph -> ( ( L ` G ) e. ( LSHyp ` U ) \/ ( L ` G ) = V ) ) | 
						
							| 70 | 58 68 69 | mpjaodan |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |