| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2m.v |
|- V = ( Base ` U ) |
| 2 |
|
lclkrlem2m.t |
|- .x. = ( .s ` U ) |
| 3 |
|
lclkrlem2m.s |
|- S = ( Scalar ` U ) |
| 4 |
|
lclkrlem2m.q |
|- .X. = ( .r ` S ) |
| 5 |
|
lclkrlem2m.z |
|- .0. = ( 0g ` S ) |
| 6 |
|
lclkrlem2m.i |
|- I = ( invr ` S ) |
| 7 |
|
lclkrlem2m.m |
|- .- = ( -g ` U ) |
| 8 |
|
lclkrlem2m.f |
|- F = ( LFnl ` U ) |
| 9 |
|
lclkrlem2m.d |
|- D = ( LDual ` U ) |
| 10 |
|
lclkrlem2m.p |
|- .+ = ( +g ` D ) |
| 11 |
|
lclkrlem2m.x |
|- ( ph -> X e. V ) |
| 12 |
|
lclkrlem2m.y |
|- ( ph -> Y e. V ) |
| 13 |
|
lclkrlem2m.e |
|- ( ph -> E e. F ) |
| 14 |
|
lclkrlem2m.g |
|- ( ph -> G e. F ) |
| 15 |
|
lclkrlem2n.n |
|- N = ( LSpan ` U ) |
| 16 |
|
lclkrlem2n.l |
|- L = ( LKer ` U ) |
| 17 |
|
lclkrlem2o.h |
|- H = ( LHyp ` K ) |
| 18 |
|
lclkrlem2o.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 19 |
|
lclkrlem2o.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 20 |
|
lclkrlem2o.a |
|- .(+) = ( LSSum ` U ) |
| 21 |
|
lclkrlem2o.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 22 |
|
lclkrlem2q.le |
|- ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) |
| 23 |
|
lclkrlem2q.lg |
|- ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
| 24 |
|
lclkrlem2q.b |
|- B = ( X .- ( ( ( ( E .+ G ) ` X ) .X. ( I ` ( ( E .+ G ) ` Y ) ) ) .x. Y ) ) |
| 25 |
|
lclkrlem2q.n |
|- ( ph -> ( ( E .+ G ) ` Y ) =/= .0. ) |
| 26 |
|
lclkrlem2r.bn |
|- ( ph -> B = ( 0g ` U ) ) |
| 27 |
12
|
snssd |
|- ( ph -> { Y } C_ V ) |
| 28 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
| 29 |
17 28 19 1 18
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ { Y } C_ V ) -> ( ._|_ ` { Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 30 |
21 27 29
|
syl2anc |
|- ( ph -> ( ._|_ ` { Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 31 |
17 28 18
|
dochoc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` { Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { Y } ) ) ) = ( ._|_ ` { Y } ) ) |
| 32 |
21 30 31
|
syl2anc |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { Y } ) ) ) = ( ._|_ ` { Y } ) ) |
| 33 |
32
|
ad2antrr |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { Y } ) ) ) = ( ._|_ ` { Y } ) ) |
| 34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
|
lclkrlem2r |
|- ( ph -> ( L ` G ) C_ ( L ` ( E .+ G ) ) ) |
| 35 |
34
|
ad2antrr |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` G ) C_ ( L ` ( E .+ G ) ) ) |
| 36 |
|
eqid |
|- ( LSHyp ` U ) = ( LSHyp ` U ) |
| 37 |
17 19 21
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 38 |
37
|
ad2antrr |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> U e. LVec ) |
| 39 |
|
simplr |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` G ) e. ( LSHyp ` U ) ) |
| 40 |
|
simpr |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) |
| 41 |
36 38 39 40
|
lshpcmp |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ( L ` G ) C_ ( L ` ( E .+ G ) ) <-> ( L ` G ) = ( L ` ( E .+ G ) ) ) ) |
| 42 |
35 41
|
mpbid |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` G ) = ( L ` ( E .+ G ) ) ) |
| 43 |
23
|
ad2antrr |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
| 44 |
42 43
|
eqtr3d |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` ( E .+ G ) ) = ( ._|_ ` { Y } ) ) |
| 45 |
44
|
fveq2d |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( L ` ( E .+ G ) ) ) = ( ._|_ ` ( ._|_ ` { Y } ) ) ) |
| 46 |
45
|
fveq2d |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( ._|_ ` ( ._|_ ` ( ._|_ ` { Y } ) ) ) ) |
| 47 |
33 46 44
|
3eqtr4d |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
| 48 |
17 19 18 1 21
|
dochoc1 |
|- ( ph -> ( ._|_ ` ( ._|_ ` V ) ) = V ) |
| 49 |
48
|
ad2antrr |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) = V ) -> ( ._|_ ` ( ._|_ ` V ) ) = V ) |
| 50 |
|
simpr |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) = V ) -> ( L ` ( E .+ G ) ) = V ) |
| 51 |
50
|
fveq2d |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) = V ) -> ( ._|_ ` ( L ` ( E .+ G ) ) ) = ( ._|_ ` V ) ) |
| 52 |
51
|
fveq2d |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) = V ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( ._|_ ` ( ._|_ ` V ) ) ) |
| 53 |
49 52 50
|
3eqtr4d |
|- ( ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) /\ ( L ` ( E .+ G ) ) = V ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
| 54 |
17 19 21
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 55 |
8 9 10 54 13 14
|
ldualvaddcl |
|- ( ph -> ( E .+ G ) e. F ) |
| 56 |
1 36 8 16 37 55
|
lkrshpor |
|- ( ph -> ( ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) \/ ( L ` ( E .+ G ) ) = V ) ) |
| 57 |
56
|
adantr |
|- ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) -> ( ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) \/ ( L ` ( E .+ G ) ) = V ) ) |
| 58 |
47 53 57
|
mpjaodan |
|- ( ( ph /\ ( L ` G ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
| 59 |
48
|
adantr |
|- ( ( ph /\ ( L ` G ) = V ) -> ( ._|_ ` ( ._|_ ` V ) ) = V ) |
| 60 |
1 8 16 54 55
|
lkrssv |
|- ( ph -> ( L ` ( E .+ G ) ) C_ V ) |
| 61 |
60
|
adantr |
|- ( ( ph /\ ( L ` G ) = V ) -> ( L ` ( E .+ G ) ) C_ V ) |
| 62 |
|
simpr |
|- ( ( ph /\ ( L ` G ) = V ) -> ( L ` G ) = V ) |
| 63 |
34
|
adantr |
|- ( ( ph /\ ( L ` G ) = V ) -> ( L ` G ) C_ ( L ` ( E .+ G ) ) ) |
| 64 |
62 63
|
eqsstrrd |
|- ( ( ph /\ ( L ` G ) = V ) -> V C_ ( L ` ( E .+ G ) ) ) |
| 65 |
61 64
|
eqssd |
|- ( ( ph /\ ( L ` G ) = V ) -> ( L ` ( E .+ G ) ) = V ) |
| 66 |
65
|
fveq2d |
|- ( ( ph /\ ( L ` G ) = V ) -> ( ._|_ ` ( L ` ( E .+ G ) ) ) = ( ._|_ ` V ) ) |
| 67 |
66
|
fveq2d |
|- ( ( ph /\ ( L ` G ) = V ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( ._|_ ` ( ._|_ ` V ) ) ) |
| 68 |
59 67 65
|
3eqtr4d |
|- ( ( ph /\ ( L ` G ) = V ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
| 69 |
1 36 8 16 37 14
|
lkrshpor |
|- ( ph -> ( ( L ` G ) e. ( LSHyp ` U ) \/ ( L ` G ) = V ) ) |
| 70 |
58 68 69
|
mpjaodan |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |