Description: Lemma for lclkr . Thus, the sum has a closed kernel when B is zero. (Contributed by NM, 18-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lclkrlem2m.v | |
|
lclkrlem2m.t | |
||
lclkrlem2m.s | |
||
lclkrlem2m.q | |
||
lclkrlem2m.z | |
||
lclkrlem2m.i | |
||
lclkrlem2m.m | |
||
lclkrlem2m.f | |
||
lclkrlem2m.d | |
||
lclkrlem2m.p | |
||
lclkrlem2m.x | |
||
lclkrlem2m.y | |
||
lclkrlem2m.e | |
||
lclkrlem2m.g | |
||
lclkrlem2n.n | |
||
lclkrlem2n.l | |
||
lclkrlem2o.h | |
||
lclkrlem2o.o | |
||
lclkrlem2o.u | |
||
lclkrlem2o.a | |
||
lclkrlem2o.k | |
||
lclkrlem2q.le | |
||
lclkrlem2q.lg | |
||
lclkrlem2q.b | |
||
lclkrlem2q.n | |
||
lclkrlem2r.bn | |
||
Assertion | lclkrlem2s | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2m.v | |
|
2 | lclkrlem2m.t | |
|
3 | lclkrlem2m.s | |
|
4 | lclkrlem2m.q | |
|
5 | lclkrlem2m.z | |
|
6 | lclkrlem2m.i | |
|
7 | lclkrlem2m.m | |
|
8 | lclkrlem2m.f | |
|
9 | lclkrlem2m.d | |
|
10 | lclkrlem2m.p | |
|
11 | lclkrlem2m.x | |
|
12 | lclkrlem2m.y | |
|
13 | lclkrlem2m.e | |
|
14 | lclkrlem2m.g | |
|
15 | lclkrlem2n.n | |
|
16 | lclkrlem2n.l | |
|
17 | lclkrlem2o.h | |
|
18 | lclkrlem2o.o | |
|
19 | lclkrlem2o.u | |
|
20 | lclkrlem2o.a | |
|
21 | lclkrlem2o.k | |
|
22 | lclkrlem2q.le | |
|
23 | lclkrlem2q.lg | |
|
24 | lclkrlem2q.b | |
|
25 | lclkrlem2q.n | |
|
26 | lclkrlem2r.bn | |
|
27 | 12 | snssd | |
28 | eqid | |
|
29 | 17 28 19 1 18 | dochcl | |
30 | 21 27 29 | syl2anc | |
31 | 17 28 18 | dochoc | |
32 | 21 30 31 | syl2anc | |
33 | 32 | ad2antrr | |
34 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | lclkrlem2r | |
35 | 34 | ad2antrr | |
36 | eqid | |
|
37 | 17 19 21 | dvhlvec | |
38 | 37 | ad2antrr | |
39 | simplr | |
|
40 | simpr | |
|
41 | 36 38 39 40 | lshpcmp | |
42 | 35 41 | mpbid | |
43 | 23 | ad2antrr | |
44 | 42 43 | eqtr3d | |
45 | 44 | fveq2d | |
46 | 45 | fveq2d | |
47 | 33 46 44 | 3eqtr4d | |
48 | 17 19 18 1 21 | dochoc1 | |
49 | 48 | ad2antrr | |
50 | simpr | |
|
51 | 50 | fveq2d | |
52 | 51 | fveq2d | |
53 | 49 52 50 | 3eqtr4d | |
54 | 17 19 21 | dvhlmod | |
55 | 8 9 10 54 13 14 | ldualvaddcl | |
56 | 1 36 8 16 37 55 | lkrshpor | |
57 | 56 | adantr | |
58 | 47 53 57 | mpjaodan | |
59 | 48 | adantr | |
60 | 1 8 16 54 55 | lkrssv | |
61 | 60 | adantr | |
62 | simpr | |
|
63 | 34 | adantr | |
64 | 62 63 | eqsstrrd | |
65 | 61 64 | eqssd | |
66 | 65 | fveq2d | |
67 | 66 | fveq2d | |
68 | 59 67 65 | 3eqtr4d | |
69 | 1 36 8 16 37 14 | lkrshpor | |
70 | 58 68 69 | mpjaodan | |