Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2m.v |
|
2 |
|
lclkrlem2m.t |
|
3 |
|
lclkrlem2m.s |
|
4 |
|
lclkrlem2m.q |
|
5 |
|
lclkrlem2m.z |
|
6 |
|
lclkrlem2m.i |
|
7 |
|
lclkrlem2m.m |
|
8 |
|
lclkrlem2m.f |
|
9 |
|
lclkrlem2m.d |
|
10 |
|
lclkrlem2m.p |
|
11 |
|
lclkrlem2m.x |
|
12 |
|
lclkrlem2m.y |
|
13 |
|
lclkrlem2m.e |
|
14 |
|
lclkrlem2m.g |
|
15 |
|
lclkrlem2n.n |
|
16 |
|
lclkrlem2n.l |
|
17 |
|
lclkrlem2o.h |
|
18 |
|
lclkrlem2o.o |
|
19 |
|
lclkrlem2o.u |
|
20 |
|
lclkrlem2o.a |
|
21 |
|
lclkrlem2o.k |
|
22 |
|
lclkrlem2q.le |
|
23 |
|
lclkrlem2q.lg |
|
24 |
|
lclkrlem2q.b |
|
25 |
|
lclkrlem2q.n |
|
26 |
|
lclkrlem2r.bn |
|
27 |
12
|
snssd |
|
28 |
|
eqid |
|
29 |
17 28 19 1 18
|
dochcl |
|
30 |
21 27 29
|
syl2anc |
|
31 |
17 28 18
|
dochoc |
|
32 |
21 30 31
|
syl2anc |
|
33 |
32
|
ad2antrr |
|
34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
|
lclkrlem2r |
|
35 |
34
|
ad2antrr |
|
36 |
|
eqid |
|
37 |
17 19 21
|
dvhlvec |
|
38 |
37
|
ad2antrr |
|
39 |
|
simplr |
|
40 |
|
simpr |
|
41 |
36 38 39 40
|
lshpcmp |
|
42 |
35 41
|
mpbid |
|
43 |
23
|
ad2antrr |
|
44 |
42 43
|
eqtr3d |
|
45 |
44
|
fveq2d |
|
46 |
45
|
fveq2d |
|
47 |
33 46 44
|
3eqtr4d |
|
48 |
17 19 18 1 21
|
dochoc1 |
|
49 |
48
|
ad2antrr |
|
50 |
|
simpr |
|
51 |
50
|
fveq2d |
|
52 |
51
|
fveq2d |
|
53 |
49 52 50
|
3eqtr4d |
|
54 |
17 19 21
|
dvhlmod |
|
55 |
8 9 10 54 13 14
|
ldualvaddcl |
|
56 |
1 36 8 16 37 55
|
lkrshpor |
|
57 |
56
|
adantr |
|
58 |
47 53 57
|
mpjaodan |
|
59 |
48
|
adantr |
|
60 |
1 8 16 54 55
|
lkrssv |
|
61 |
60
|
adantr |
|
62 |
|
simpr |
|
63 |
34
|
adantr |
|
64 |
62 63
|
eqsstrrd |
|
65 |
61 64
|
eqssd |
|
66 |
65
|
fveq2d |
|
67 |
66
|
fveq2d |
|
68 |
59 67 65
|
3eqtr4d |
|
69 |
1 36 8 16 37 14
|
lkrshpor |
|
70 |
58 68 69
|
mpjaodan |
|