Metamath Proof Explorer


Theorem lclkrlem2s

Description: Lemma for lclkr . Thus, the sum has a closed kernel when B is zero. (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v V=BaseU
lclkrlem2m.t ·˙=U
lclkrlem2m.s S=ScalarU
lclkrlem2m.q ×˙=S
lclkrlem2m.z 0˙=0S
lclkrlem2m.i I=invrS
lclkrlem2m.m -˙=-U
lclkrlem2m.f F=LFnlU
lclkrlem2m.d D=LDualU
lclkrlem2m.p +˙=+D
lclkrlem2m.x φXV
lclkrlem2m.y φYV
lclkrlem2m.e φEF
lclkrlem2m.g φGF
lclkrlem2n.n N=LSpanU
lclkrlem2n.l L=LKerU
lclkrlem2o.h H=LHypK
lclkrlem2o.o ˙=ocHKW
lclkrlem2o.u U=DVecHKW
lclkrlem2o.a ˙=LSSumU
lclkrlem2o.k φKHLWH
lclkrlem2q.le φLE=˙X
lclkrlem2q.lg φLG=˙Y
lclkrlem2q.b B=X-˙E+˙GX×˙IE+˙GY·˙Y
lclkrlem2q.n φE+˙GY0˙
lclkrlem2r.bn φB=0U
Assertion lclkrlem2s φ˙˙LE+˙G=LE+˙G

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v V=BaseU
2 lclkrlem2m.t ·˙=U
3 lclkrlem2m.s S=ScalarU
4 lclkrlem2m.q ×˙=S
5 lclkrlem2m.z 0˙=0S
6 lclkrlem2m.i I=invrS
7 lclkrlem2m.m -˙=-U
8 lclkrlem2m.f F=LFnlU
9 lclkrlem2m.d D=LDualU
10 lclkrlem2m.p +˙=+D
11 lclkrlem2m.x φXV
12 lclkrlem2m.y φYV
13 lclkrlem2m.e φEF
14 lclkrlem2m.g φGF
15 lclkrlem2n.n N=LSpanU
16 lclkrlem2n.l L=LKerU
17 lclkrlem2o.h H=LHypK
18 lclkrlem2o.o ˙=ocHKW
19 lclkrlem2o.u U=DVecHKW
20 lclkrlem2o.a ˙=LSSumU
21 lclkrlem2o.k φKHLWH
22 lclkrlem2q.le φLE=˙X
23 lclkrlem2q.lg φLG=˙Y
24 lclkrlem2q.b B=X-˙E+˙GX×˙IE+˙GY·˙Y
25 lclkrlem2q.n φE+˙GY0˙
26 lclkrlem2r.bn φB=0U
27 12 snssd φYV
28 eqid DIsoHKW=DIsoHKW
29 17 28 19 1 18 dochcl KHLWHYV˙YranDIsoHKW
30 21 27 29 syl2anc φ˙YranDIsoHKW
31 17 28 18 dochoc KHLWH˙YranDIsoHKW˙˙˙Y=˙Y
32 21 30 31 syl2anc φ˙˙˙Y=˙Y
33 32 ad2antrr φLGLSHypULE+˙GLSHypU˙˙˙Y=˙Y
34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 lclkrlem2r φLGLE+˙G
35 34 ad2antrr φLGLSHypULE+˙GLSHypULGLE+˙G
36 eqid LSHypU=LSHypU
37 17 19 21 dvhlvec φULVec
38 37 ad2antrr φLGLSHypULE+˙GLSHypUULVec
39 simplr φLGLSHypULE+˙GLSHypULGLSHypU
40 simpr φLGLSHypULE+˙GLSHypULE+˙GLSHypU
41 36 38 39 40 lshpcmp φLGLSHypULE+˙GLSHypULGLE+˙GLG=LE+˙G
42 35 41 mpbid φLGLSHypULE+˙GLSHypULG=LE+˙G
43 23 ad2antrr φLGLSHypULE+˙GLSHypULG=˙Y
44 42 43 eqtr3d φLGLSHypULE+˙GLSHypULE+˙G=˙Y
45 44 fveq2d φLGLSHypULE+˙GLSHypU˙LE+˙G=˙˙Y
46 45 fveq2d φLGLSHypULE+˙GLSHypU˙˙LE+˙G=˙˙˙Y
47 33 46 44 3eqtr4d φLGLSHypULE+˙GLSHypU˙˙LE+˙G=LE+˙G
48 17 19 18 1 21 dochoc1 φ˙˙V=V
49 48 ad2antrr φLGLSHypULE+˙G=V˙˙V=V
50 simpr φLGLSHypULE+˙G=VLE+˙G=V
51 50 fveq2d φLGLSHypULE+˙G=V˙LE+˙G=˙V
52 51 fveq2d φLGLSHypULE+˙G=V˙˙LE+˙G=˙˙V
53 49 52 50 3eqtr4d φLGLSHypULE+˙G=V˙˙LE+˙G=LE+˙G
54 17 19 21 dvhlmod φULMod
55 8 9 10 54 13 14 ldualvaddcl φE+˙GF
56 1 36 8 16 37 55 lkrshpor φLE+˙GLSHypULE+˙G=V
57 56 adantr φLGLSHypULE+˙GLSHypULE+˙G=V
58 47 53 57 mpjaodan φLGLSHypU˙˙LE+˙G=LE+˙G
59 48 adantr φLG=V˙˙V=V
60 1 8 16 54 55 lkrssv φLE+˙GV
61 60 adantr φLG=VLE+˙GV
62 simpr φLG=VLG=V
63 34 adantr φLG=VLGLE+˙G
64 62 63 eqsstrrd φLG=VVLE+˙G
65 61 64 eqssd φLG=VLE+˙G=V
66 65 fveq2d φLG=V˙LE+˙G=˙V
67 66 fveq2d φLG=V˙˙LE+˙G=˙˙V
68 59 67 65 3eqtr4d φLG=V˙˙LE+˙G=LE+˙G
69 1 36 8 16 37 14 lkrshpor φLGLSHypULG=V
70 58 68 69 mpjaodan φ˙˙LE+˙G=LE+˙G